Skip to content

CLN: Removed Unnecessary Conditionals in groupby_helper #19734

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Feb 18, 2018
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
176 changes: 47 additions & 129 deletions pandas/_libs/groupby_helper.pxi.in
Original file line number Diff line number Diff line change
Expand Up @@ -56,36 +56,19 @@ def group_add_{{name}}(ndarray[{{dest_type2}}, ndim=2] out,

with nogil:

if K > 1:

for i in range(N):
lab = labels[i]
if lab < 0:
continue

counts[lab] += 1
for j in range(K):
val = values[i, j]

# not nan
if val == val:
nobs[lab, j] += 1
sumx[lab, j] += val

else:

for i in range(N):
lab = labels[i]
if lab < 0:
continue
for i in range(N):
lab = labels[i]
if lab < 0:
continue

counts[lab] += 1
val = values[i, 0]
counts[lab] += 1
for j in range(K):
val = values[i, j]

# not nan
if val == val:
nobs[lab, 0] += 1
sumx[lab, 0] += val
nobs[lab, j] += 1
sumx[lab, j] += val

for i in range(ncounts):
for j in range(K):
Expand Down Expand Up @@ -119,33 +102,19 @@ def group_prod_{{name}}(ndarray[{{dest_type2}}, ndim=2] out,
N, K = (<object> values).shape

with nogil:
if K > 1:
for i in range(N):
lab = labels[i]
if lab < 0:
continue

counts[lab] += 1
for j in range(K):
val = values[i, j]

# not nan
if val == val:
nobs[lab, j] += 1
prodx[lab, j] *= val
else:
for i in range(N):
lab = labels[i]
if lab < 0:
continue
for i in range(N):
lab = labels[i]
if lab < 0:
continue

counts[lab] += 1
val = values[i, 0]
counts[lab] += 1
for j in range(K):
val = values[i, j]

# not nan
if val == val:
nobs[lab, 0] += 1
prodx[lab, 0] *= val
nobs[lab, j] += 1
prodx[lab, j] *= val

for i in range(ncounts):
for j in range(K):
Expand Down Expand Up @@ -231,31 +200,18 @@ def group_mean_{{name}}(ndarray[{{dest_type2}}, ndim=2] out,
N, K = (<object> values).shape

with nogil:
if K > 1:
for i in range(N):
lab = labels[i]
if lab < 0:
continue

counts[lab] += 1
for j in range(K):
val = values[i, j]
# not nan
if val == val:
nobs[lab, j] += 1
sumx[lab, j] += val
else:
for i in range(N):
lab = labels[i]
if lab < 0:
continue
for i in range(N):
lab = labels[i]
if lab < 0:
continue

counts[lab] += 1
val = values[i, 0]
counts[lab] += 1
for j in range(K):
val = values[i, j]
# not nan
if val == val:
nobs[lab, 0] += 1
sumx[lab, 0] += val
nobs[lab, j] += 1
sumx[lab, j] += val

for i in range(ncounts):
for j in range(K):
Expand Down Expand Up @@ -670,43 +626,24 @@ def group_max_{{name}}(ndarray[{{dest_type2}}, ndim=2] out,
N, K = (<object> values).shape

with nogil:
if K > 1:
for i in range(N):
lab = labels[i]
if lab < 0:
continue

counts[lab] += 1
for j in range(K):
val = values[i, j]

# not nan
{{if name == 'int64'}}
if val != {{nan_val}}:
{{else}}
if val == val and val != {{nan_val}}:
{{endif}}
nobs[lab, j] += 1
if val > maxx[lab, j]:
maxx[lab, j] = val
else:
for i in range(N):
lab = labels[i]
if lab < 0:
continue
for i in range(N):
lab = labels[i]
if lab < 0:
continue

counts[lab] += 1
val = values[i, 0]
counts[lab] += 1
for j in range(K):
val = values[i, j]

# not nan
{{if name == 'int64'}}
if val != {{nan_val}}:
{{else}}
if val == val and val != {{nan_val}}:
{{endif}}
nobs[lab, 0] += 1
if val > maxx[lab, 0]:
maxx[lab, 0] = val
nobs[lab, j] += 1
if val > maxx[lab, j]:
maxx[lab, j] = val

for i in range(ncounts):
for j in range(K):
Expand Down Expand Up @@ -744,43 +681,24 @@ def group_min_{{name}}(ndarray[{{dest_type2}}, ndim=2] out,
N, K = (<object> values).shape

with nogil:
if K > 1:
for i in range(N):
lab = labels[i]
if lab < 0:
continue

counts[lab] += 1
for j in range(K):
val = values[i, j]

# not nan
{{if name == 'int64'}}
if val != {{nan_val}}:
{{else}}
if val == val and val != {{nan_val}}:
{{endif}}
nobs[lab, j] += 1
if val < minx[lab, j]:
minx[lab, j] = val
else:
for i in range(N):
lab = labels[i]
if lab < 0:
continue
for i in range(N):
lab = labels[i]
if lab < 0:
continue

counts[lab] += 1
val = values[i, 0]
counts[lab] += 1
for j in range(K):
val = values[i, j]

# not nan
{{if name == 'int64'}}
if val != {{nan_val}}:
{{else}}
if val == val and val != {{nan_val}}:
{{endif}}
nobs[lab, 0] += 1
if val < minx[lab, 0]:
minx[lab, 0] = val
nobs[lab, j] += 1
if val < minx[lab, j]:
minx[lab, j] = val

for i in range(ncounts):
for j in range(K):
Expand Down