Skip to content

Added implementation of var and std methods for ArrayBase #790

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 5 commits into from
Jan 8, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
110 changes: 110 additions & 0 deletions src/numeric/impl_numeric.rs
Original file line number Diff line number Diff line change
Expand Up @@ -13,6 +13,8 @@ use crate::imp_prelude::*;
use crate::itertools::enumerate;
use crate::numeric_util;

use crate::{FoldWhile, Zip};

/// # Numerical Methods for Arrays
impl<A, S, D> ArrayBase<S, D>
where
Expand Down Expand Up @@ -111,6 +113,114 @@ where
sum
}

/// Return variance of elements in the array.
///
/// The variance is computed using the [Welford one-pass
/// algorithm](https://www.jstor.org/stable/1266577).
///
/// The parameter `ddof` specifies the "delta degrees of freedom". For
/// example, to calculate the population variance, use `ddof = 0`, or to
/// calculate the sample variance, use `ddof = 1`.
///
/// The variance is defined as:
///
/// ```text
/// 1 n
/// variance = ―――――――― ∑ (xᵢ - x̅)²
/// n - ddof i=1
/// ```
///
/// where
///
/// ```text
/// 1 n
/// x̅ = ― ∑ xᵢ
/// n i=1
/// ```
///
/// and `n` is the length of the array.
///
/// **Panics** if `ddof` is less than zero or greater than `n`
///
/// # Example
///
/// ```
/// use ndarray::array;
/// use approx::assert_abs_diff_eq;
///
/// let a = array![1., -4.32, 1.14, 0.32];
/// let var = a.var(1.);
/// assert_abs_diff_eq!(var, 6.7331, epsilon = 1e-4);
/// ```
pub fn var(&self, ddof: A) -> A
where
A: Float + FromPrimitive,
{
let zero = A::from_usize(0).expect("Converting 0 to `A` must not fail.");
let n = A::from_usize(self.len()).expect("Converting length to `A` must not fail.");
assert!(
!(ddof < zero || ddof > n),
"`ddof` must not be less than zero or greater than the length of \
the axis",
);
let dof = n - ddof;
let mut mean = A::zero();
let mut sum_sq = A::zero();
for (i, &x) in self.into_iter().enumerate() {
let count = A::from_usize(i + 1).expect("Converting index to `A` must not fail.");
let delta = x - mean;
mean = mean + delta / count;
sum_sq = (x - mean).mul_add(delta, sum_sq);
}
sum_sq / dof
}

/// Return standard deviation of elements in the array.
///
/// The standard deviation is computed from the variance using
/// the [Welford one-pass algorithm](https://www.jstor.org/stable/1266577).
///
/// The parameter `ddof` specifies the "delta degrees of freedom". For
/// example, to calculate the population standard deviation, use `ddof = 0`,
/// or to calculate the sample standard deviation, use `ddof = 1`.
///
/// The standard deviation is defined as:
///
/// ```text
/// ⎛ 1 n ⎞
/// stddev = sqrt ⎜ ―――――――― ∑ (xᵢ - x̅)²⎟
/// ⎝ n - ddof i=1 ⎠
/// ```
///
/// where
///
/// ```text
/// 1 n
/// x̅ = ― ∑ xᵢ
/// n i=1
/// ```
///
/// and `n` is the length of the array.
///
/// **Panics** if `ddof` is less than zero or greater than `n`
///
/// # Example
///
/// ```
/// use ndarray::array;
/// use approx::assert_abs_diff_eq;
///
/// let a = array![1., -4.32, 1.14, 0.32];
/// let stddev = a.std(1.);
/// assert_abs_diff_eq!(stddev, 2.59483, epsilon = 1e-4);
/// ```
pub fn std(&self, ddof: A) -> A
where
A: Float + FromPrimitive,
{
self.var(ddof).sqrt()
}

/// Return sum along `axis`.
///
/// ```
Expand Down
2 changes: 1 addition & 1 deletion src/private.rs
Original file line number Diff line number Diff line change
Expand Up @@ -21,5 +21,5 @@ macro_rules! private_impl {
fn __private__(&self) -> crate::private::PrivateMarker {
crate::private::PrivateMarker
}
}
};
}
66 changes: 66 additions & 0 deletions tests/numeric.rs
Original file line number Diff line number Diff line change
Expand Up @@ -64,6 +64,72 @@ fn sum_mean_empty() {
assert_eq!(a, None);
}

#[test]
fn var() {
let a = array![1., -4.32, 1.14, 0.32];
assert_abs_diff_eq!(a.var(0.), 5.049875, epsilon = 1e-8);
}

#[test]
#[should_panic]
fn var_negative_ddof() {
let a = array![1., 2., 3.];
a.var(-1.);
}

#[test]
#[should_panic]
fn var_too_large_ddof() {
let a = array![1., 2., 3.];
a.var(4.);
}

#[test]
fn var_nan_ddof() {
let a = Array2::<f64>::zeros((2, 3));
let v = a.var(::std::f64::NAN);
assert!(v.is_nan());
}

#[test]
fn var_empty_arr() {
let a: Array1<f64> = array![];
assert!(a.var(0.0).is_nan());
}

#[test]
fn std() {
let a = array![1., -4.32, 1.14, 0.32];
assert_abs_diff_eq!(a.std(0.), 2.24719, epsilon = 1e-5);
}

#[test]
#[should_panic]
fn std_negative_ddof() {
let a = array![1., 2., 3.];
a.std(-1.);
}

#[test]
#[should_panic]
fn std_too_large_ddof() {
let a = array![1., 2., 3.];
a.std(4.);
}

#[test]
fn std_nan_ddof() {
let a = Array2::<f64>::zeros((2, 3));
let v = a.std(::std::f64::NAN);
assert!(v.is_nan());
}

#[test]
fn std_empty_arr() {
let a: Array1<f64> = array![];
assert!(a.std(0.0).is_nan());
}

#[test]
#[cfg(feature = "approx")]
fn var_axis() {
Expand Down