Skip to content

Add Ray Cluster Upgrade test of Ray Job Long Running scenarios #614

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Aug 9, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
72 changes: 72 additions & 0 deletions tests/e2e/mnist_sleep.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,72 @@
# Copyright 2022 IBM, Red Hat
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import time
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
from torchvision import datasets, transforms


# Define a simple neural network
class NeuralNetwork(nn.Module):
def __init__(self):
super(NeuralNetwork, self).__init__()
self.flatten = nn.Flatten()
self.linear_relu_stack = nn.Sequential(
nn.Linear(28 * 28, 512),
nn.ReLU(),
nn.Linear(512, 512),
nn.ReLU(),
nn.Linear(512, 10),
)

def forward(self, x):
x = self.flatten(x)
logits = self.linear_relu_stack(x)
return logits


# Define the training function
def train():
# Sleeping for 24 hours for upgrade test scenario
print("Sleeping for 24 hours before starting the training for upgrade testing...")
time.sleep(24 * 60 * 60)

# Load dataset
transform = transforms.Compose([transforms.ToTensor()])
train_dataset = datasets.FashionMNIST(
root="./data", train=True, download=True, transform=transform
)
train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True)

# Initialize the neural network, loss function, and optimizer
model = NeuralNetwork()
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)

# Train the model
num_epochs = 3
for epoch in range(num_epochs):
for inputs, labels in train_loader:
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
print(f"Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item():.4f}")


if __name__ == "__main__":
train()
175 changes: 175 additions & 0 deletions tests/upgrade/raycluster_sdk_upgrade_sleep_test.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,175 @@
import requests
from time import sleep

from codeflare_sdk import (
Cluster,
ClusterConfiguration,
TokenAuthentication,
get_cluster,
)
from codeflare_sdk.job import RayJobClient

from tests.e2e.support import *


from codeflare_sdk.utils.kube_api_helpers import _kube_api_error_handling

namespace = "test-ns-rayupgrade-sleep"
# Global variables for kueue resources
cluster_queue = "cluster-queue-mnist"
flavor = "default-flavor-mnist"
local_queue = "local-queue-mnist"


# Creates a Ray cluster , submit RayJob mnist script long running
class TestSetupSleepRayJob:
def setup_method(self):
initialize_kubernetes_client(self)
create_namespace_with_name(self, namespace)
try:
create_cluster_queue(self, cluster_queue, flavor)
create_resource_flavor(self, flavor)
create_local_queue(self, cluster_queue, local_queue)
except Exception as e:
delete_namespace(self)
delete_kueue_resources(self)
return _kube_api_error_handling(e)

def test_mnist_ray_cluster_sdk_auth(self):
self.run_mnist_raycluster_sdk_oauth()

def run_mnist_raycluster_sdk_oauth(self):
ray_image = get_ray_image()

auth = TokenAuthentication(
token=run_oc_command(["whoami", "--show-token=true"]),
server=run_oc_command(["whoami", "--show-server=true"]),
skip_tls=True,
)
auth.login()

cluster = Cluster(
ClusterConfiguration(
name="mnist",
namespace=self.namespace,
num_workers=1,
head_cpus=1,
head_memory=4,
worker_cpu_requests=1,
worker_cpu_limits=1,
worker_memory_requests=4,
worker_memory_limits=4,
image=ray_image,
write_to_file=True,
verify_tls=False,
)
)

try:
cluster.up()
cluster.status()
# wait for raycluster to be Ready
cluster.wait_ready()
cluster.status()
# Check cluster details
cluster.details()
# Assert the cluster status is READY
_, ready = cluster.status()
assert ready
submission_id = self.assert_jobsubmit()
print(f"Job submitted successfully, job submission id: ", submission_id)

except Exception as e:
print(f"An unexpected error occurred. Error: ", e)
delete_namespace(self)
delete_kueue_resources(self)
assert False, "Cluster is not ready!"

def assert_jobsubmit(self):
auth_token = run_oc_command(["whoami", "--show-token=true"])
cluster = get_cluster("mnist", namespace)
cluster.details()
ray_dashboard = cluster.cluster_dashboard_uri()
header = {"Authorization": f"Bearer {auth_token}"}
client = RayJobClient(address=ray_dashboard, headers=header, verify=False)

# Submit the job
submission_id = client.submit_job(
entrypoint="python mnist_sleep.py",
runtime_env={
"working_dir": "./tests/e2e/",
"pip": {"packages": ["torchvision==0.12.0"], "pip_check": False},
"env_vars": get_setup_env_variables(),
},
)
print(f"Submitted job with ID: {submission_id}")
done = False
time = 0
timeout = 180
while not done:
status = client.get_job_status(submission_id)
if status.is_terminal():
break
if status == "RUNNING":
print(f"Job is Running: '{status}'")
assert True
break
if not done:
print(status)
if timeout and time >= timeout:
raise TimeoutError(f"job has timed out after waiting {timeout}s")
sleep(5)
time += 5

logs = client.get_job_logs(submission_id)
print(logs)
return submission_id


class TestVerifySleepRayJobRunning:
def setup_method(self):
initialize_kubernetes_client(self)
auth = TokenAuthentication(
token=run_oc_command(["whoami", "--show-token=true"]),
server=run_oc_command(["whoami", "--show-server=true"]),
skip_tls=True,
)
auth.login()
self.namespace = namespace
self.cluster = get_cluster("mnist", self.namespace)
self.cluster_queue = cluster_queue
self.resource_flavor = flavor
if not self.cluster:
raise RuntimeError("TestSetupSleepRayJob needs to be run before this test")

def teardown_method(self):
delete_namespace(self)
delete_kueue_resources(self)

def test_mnist_job_running(self):
client = self.get_ray_job_client(self.cluster)
self.assertJobExists(client, 1)
self.assertJobRunning(client)
self.cluster.down()

def get_ray_job_client(self, cluster):
auth_token = run_oc_command(["whoami", "--show-token=true"])
ray_dashboard = cluster.cluster_dashboard_uri()
header = {"Authorization": f"Bearer {auth_token}"}
return RayJobClient(address=ray_dashboard, headers=header, verify=False)

# Assertions
def assertJobExists(self, client, expectedJobsSize):
job_list = client.list_jobs()
assert len(job_list) == expectedJobsSize

def assertJobRunning(self, client):
job_list = client.list_jobs()
submission_id = job_list[0].submission_id
status = client.get_job_status(submission_id)
if status == "RUNNING":
print(f"Job is Running: '{status}'")
assert True
else:
print(f"Job is not in Running state: '{status}'")
assert False