Skip to content

ENH: Better dtype inference for reductions on dataframes #52707

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Closed
wants to merge 7 commits into from
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
35 changes: 31 additions & 4 deletions doc/source/whatsnew/v2.1.0.rst
Original file line number Diff line number Diff line change
Expand Up @@ -14,12 +14,39 @@ including other versions of pandas.
Enhancements
~~~~~~~~~~~~

.. _whatsnew_210.enhancements.enhancement1:
.. _whatsnew_210.enhancements.better_dtype_inference_for_frame_reductions:

Better dtype inference when doing reductions on dataframes of nullable arrays
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Dtype inference when doing reductions on DataFrames with nullable arrays has been improved (:issue:`52707`).

*Previous behavior*:

.. code-block:: ipython

In [1]: df = pd.DataFrame({"a": [1], "b": [pd.NA]}, dtype="Int64")
In [2]: df.sum()
a 1
b 0
dtype: int64
In [3]: df.sum(min_count=1)
a 1
b <NA>
dtype: object

With the new behavior, we keep the original dtype:

*New behavior*:

.. ipython:: python

df = pd.DataFrame({"a": [1], "b": [pd.NA]}, dtype="Int64")
df.sum()
df.sum(min_count=1)

enhancement1
^^^^^^^^^^^^

.. _whatsnew_210.enhancements.enhancement2:
.. _whatsnew_210.enhancements.map_works_for_all_array_types:

``map(func, na_action="ignore")`` now works for all array types
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Expand Down
35 changes: 21 additions & 14 deletions pandas/core/frame.py
Original file line number Diff line number Diff line change
Expand Up @@ -49,6 +49,7 @@
from pandas._libs.hashtable import duplicated
from pandas._libs.lib import (
NoDefault,
infer_dtype,
is_range_indexer,
no_default,
)
Expand Down Expand Up @@ -94,6 +95,7 @@
is_dataclass,
is_dict_like,
is_dtype_equal,
is_extension_array_dtype,
is_float,
is_float_dtype,
is_hashable,
Expand Down Expand Up @@ -10899,14 +10901,29 @@ def _get_data() -> DataFrame:
# simple case where we can use BlockManager.reduce
res = df._mgr.reduce(blk_func)
out = df._constructor(res).iloc[0]
mgr_dtypes = df._mgr.get_dtypes().tolist()
if out.dtype != object:
# e.g. if data dtype is UInt8 and out.dtype is uint64, then common is UInt64
mgr_dtypes.append(out.dtype)
common_dtype = find_common_type(mgr_dtypes) if mgr_dtypes else None
is_ext_dtype = common_dtype is not None and is_extension_array_dtype(
common_dtype
)

if out_dtype is not None:
out = out.astype(out_dtype)
elif is_ext_dtype and out.dtype == common_dtype.type:
out = out.astype(common_dtype)
elif (df._mgr.get_dtypes() == object).any():
out = out.astype(object)
elif len(self) == 0 and name in ("sum", "prod"):
# Even if we are object dtype, follow numpy and return
# float64, see test_apply_funcs_over_empty
out = out.astype(np.float64)
elif is_ext_dtype and out.dtype == object:
inferred_dtype = infer_dtype(out)
if isna(out).all():
out = out.astype(common_dtype)
elif inferred_dtype == "integer":
out = out.astype("Int64")
elif inferred_dtype == "float":
out = out.astype("Float64")

return out

Expand Down Expand Up @@ -11157,11 +11174,6 @@ def idxmin(
)
indices = res._values

# indices will always be np.ndarray since axis is not None and
# values is a 2d array for DataFrame
# error: Item "int" of "Union[int, Any]" has no attribute "__iter__"
assert isinstance(indices, np.ndarray) # for mypy

index = data._get_axis(axis)
result = [index[i] if i >= 0 else np.nan for i in indices]
final_result = data._constructor_sliced(result, index=data._get_agg_axis(axis))
Expand All @@ -11182,11 +11194,6 @@ def idxmax(
)
indices = res._values

# indices will always be np.ndarray since axis is not None and
# values is a 2d array for DataFrame
# error: Item "int" of "Union[int, Any]" has no attribute "__iter__"
assert isinstance(indices, np.ndarray) # for mypy

index = data._get_axis(axis)
result = [index[i] if i >= 0 else np.nan for i in indices]
final_result = data._constructor_sliced(result, index=data._get_agg_axis(axis))
Expand Down
107 changes: 104 additions & 3 deletions pandas/tests/frame/test_reductions.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,10 @@
import numpy as np
import pytest

from pandas.compat import is_platform_windows
from pandas.compat import (
IS64,
is_platform_windows,
)
import pandas.util._test_decorators as td

import pandas as pd
Expand All @@ -29,6 +32,8 @@
nanops,
)

is_windows_or_is32 = is_platform_windows() or not IS64


def assert_stat_op_calc(
opname,
Expand Down Expand Up @@ -917,7 +922,7 @@ def test_mean_extensionarray_numeric_only_true(self):
arr = np.random.randint(1000, size=(10, 5))
df = DataFrame(arr, dtype="Int64")
result = df.mean(numeric_only=True)
expected = DataFrame(arr).mean()
expected = DataFrame(arr, dtype="Float64").mean()
tm.assert_series_equal(result, expected)

def test_stats_mixed_type(self, float_string_frame):
Expand Down Expand Up @@ -1544,6 +1549,100 @@ def test_reduction_timedelta_smallest_unit(self):
tm.assert_series_equal(result, expected)


class TestEmptyDataFrameReductions:
@pytest.mark.parametrize(
"opname, dtype, exp_value, exp_dtype",
[
("sum", np.int8, 0, np.int64),
("prod", np.int8, 1, np.int_),
("sum", np.int64, 0, np.int64),
("prod", np.int64, 1, np.int64),
("sum", np.uint8, 0, np.int64),
("prod", np.uint8, 1, np.uint),
("sum", np.uint64, 0, np.int64),
("prod", np.uint64, 1, np.uint64),
("sum", np.float32, 0, np.float32),
("prod", np.float32, 1, np.float32),
("sum", np.float64, 0, np.float64),
],
)
def test_df_empty_min_count_0(self, opname, dtype, exp_value, exp_dtype):
df = DataFrame({0: [], 1: []}, dtype=dtype)
result = getattr(df, opname)(min_count=0)

expected = Series([exp_value, exp_value], dtype=exp_dtype)
tm.assert_series_equal(result, expected)

@pytest.mark.parametrize(
"opname, dtype, exp_dtype",
[
("sum", np.int8, np.float64),
("prod", np.int8, np.float64),
("sum", np.int64, np.float64),
("prod", np.int64, np.float64),
("sum", np.uint8, np.float64),
("prod", np.uint8, np.float64),
("sum", np.uint64, np.float64),
("prod", np.uint64, np.float64),
("sum", np.float32, np.float32),
("prod", np.float32, np.float32),
("sum", np.float64, np.float64),
],
)
def test_df_empty_min_count_1(self, opname, dtype, exp_dtype):
df = DataFrame({0: [], 1: []}, dtype=dtype)
result = getattr(df, opname)(min_count=1)

expected = Series([np.nan, np.nan], dtype=exp_dtype)
tm.assert_series_equal(result, expected)

@pytest.mark.parametrize(
"opname, dtype, exp_value, exp_dtype",
[
("sum", "Int8", 0, ("Int32" if is_windows_or_is32 else "Int64")),
("prod", "Int8", 1, ("Int32" if is_windows_or_is32 else "Int64")),
("sum", "Int64", 0, "Int64"),
("prod", "Int64", 1, "Int64"),
("sum", "UInt8", 0, ("UInt32" if is_windows_or_is32 else "UInt64")),
("prod", "UInt8", 1, ("UInt32" if is_windows_or_is32 else "UInt64")),
("sum", "UInt64", 0, "UInt64"),
("prod", "UInt64", 1, "UInt64"),
("sum", "Float32", 0, "Float32"),
("prod", "Float32", 1, "Float32"),
("sum", "Float64", 0, "Float64"),
],
)
def test_df_empty_nullable_min_count_0(self, opname, dtype, exp_value, exp_dtype):
df = DataFrame({0: [], 1: []}, dtype=dtype)
result = getattr(df, opname)(min_count=0)

expected = Series([exp_value, exp_value], dtype=exp_dtype)
tm.assert_series_equal(result, expected)

@pytest.mark.parametrize(
"opname, dtype, exp_dtype",
[
("sum", "Int8", "Int8"),
("prod", "Int8", "Int8"),
("sum", "Int64", "Int64"),
("prod", "Int64", "Int64"),
("sum", "UInt8", "UInt8"),
("prod", "UInt8", "UInt8"),
("sum", "UInt64", "UInt64"),
("prod", "UInt64", "UInt64"),
("sum", "Float32", "Float32"),
("prod", "Float32", "Float32"),
("sum", "Float64", "Float64"),
],
)
def test_df_empty_nullable_min_count_1(self, opname, dtype, exp_dtype):
df = DataFrame({0: [], 1: []}, dtype=dtype)
result = getattr(df, opname)(min_count=1)

expected = Series([pd.NA, pd.NA], dtype=exp_dtype)
tm.assert_series_equal(result, expected)


class TestNuisanceColumns:
@pytest.mark.parametrize("method", ["any", "all"])
def test_any_all_categorical_dtype_nuisance_column(self, method):
Expand Down Expand Up @@ -1678,7 +1777,9 @@ def test_minmax_extensionarray(method, numeric_only):
df = DataFrame({"Int64": ser})
result = getattr(df, method)(numeric_only=numeric_only)
expected = Series(
[getattr(int64_info, method)], index=Index(["Int64"], dtype="object")
[getattr(int64_info, method)],
index=Index(["Int64"], dtype="object"),
dtype=pd.Int64Dtype(),
)
tm.assert_series_equal(result, expected)

Expand Down
2 changes: 1 addition & 1 deletion pandas/tests/groupby/test_apply.py
Original file line number Diff line number Diff line change
Expand Up @@ -945,7 +945,7 @@ def test_apply_multi_level_name(category):
b = pd.Categorical(b, categories=[1, 2, 3])
expected_index = pd.CategoricalIndex([1, 2, 3], categories=[1, 2, 3], name="B")
# GH#40669 - summing an empty frame gives float dtype
expected_values = [20.0, 25.0, 0.0]
expected_values = [20, 25, 0]
else:
expected_index = Index([1, 2], name="B")
expected_values = [20, 25]
Expand Down