Skip to content

TST: fixturize unfocused test #38284

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Dec 4, 2020
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
246 changes: 132 additions & 114 deletions pandas/tests/groupby/test_function.py
Original file line number Diff line number Diff line change
Expand Up @@ -145,140 +145,158 @@ def test_builtins_apply(keys, f):
tm.assert_series_equal(getattr(result, fname)(), getattr(df, fname)())


def test_arg_passthru():
# make sure that we are passing thru kwargs
# to our agg functions
class TestNumericOnly:
# make sure that we are passing thru kwargs to our agg functions

# GH3668
# GH5724
df = DataFrame(
{
"group": [1, 1, 2],
"int": [1, 2, 3],
"float": [4.0, 5.0, 6.0],
"string": list("abc"),
"category_string": Series(list("abc")).astype("category"),
"category_int": [7, 8, 9],
"datetime": pd.date_range("20130101", periods=3),
"datetimetz": pd.date_range("20130101", periods=3, tz="US/Eastern"),
"timedelta": pd.timedelta_range("1 s", periods=3, freq="s"),
},
columns=[
"group",
"int",
"float",
"string",
"category_string",
"category_int",
"datetime",
"datetimetz",
"timedelta",
],
)
@pytest.fixture
def df(self):
# GH3668
# GH5724
df = DataFrame(
{
"group": [1, 1, 2],
"int": [1, 2, 3],
"float": [4.0, 5.0, 6.0],
"string": list("abc"),
"category_string": Series(list("abc")).astype("category"),
"category_int": [7, 8, 9],
"datetime": date_range("20130101", periods=3),
"datetimetz": date_range("20130101", periods=3, tz="US/Eastern"),
"timedelta": pd.timedelta_range("1 s", periods=3, freq="s"),
},
columns=[
"group",
"int",
"float",
"string",
"category_string",
"category_int",
"datetime",
"datetimetz",
"timedelta",
],
)
return df

expected_columns_numeric = Index(["int", "float", "category_int"])
@pytest.mark.parametrize("method", ["mean", "median"])
def test_averages(self, df, method):
# mean / median
expected_columns_numeric = Index(["int", "float", "category_int"])

# mean / median
expected = DataFrame(
{
"category_int": [7.5, 9],
"float": [4.5, 6.0],
"timedelta": [pd.Timedelta("1.5s"), pd.Timedelta("3s")],
"int": [1.5, 3],
"datetime": [
Timestamp("2013-01-01 12:00:00"),
Timestamp("2013-01-03 00:00:00"),
],
"datetimetz": [
Timestamp("2013-01-01 12:00:00", tz="US/Eastern"),
Timestamp("2013-01-03 00:00:00", tz="US/Eastern"),
gb = df.groupby("group")
expected = DataFrame(
{
"category_int": [7.5, 9],
"float": [4.5, 6.0],
"timedelta": [pd.Timedelta("1.5s"), pd.Timedelta("3s")],
"int": [1.5, 3],
"datetime": [
Timestamp("2013-01-01 12:00:00"),
Timestamp("2013-01-03 00:00:00"),
],
"datetimetz": [
Timestamp("2013-01-01 12:00:00", tz="US/Eastern"),
Timestamp("2013-01-03 00:00:00", tz="US/Eastern"),
],
},
index=Index([1, 2], name="group"),
columns=[
"int",
"float",
"category_int",
"datetime",
"datetimetz",
"timedelta",
],
},
index=Index([1, 2], name="group"),
columns=["int", "float", "category_int", "datetime", "datetimetz", "timedelta"],
)

for attr in ["mean", "median"]:
result = getattr(df.groupby("group"), attr)()
tm.assert_index_equal(result.columns, expected_columns_numeric)
)

result = getattr(df.groupby("group"), attr)(numeric_only=False)
result = getattr(gb, method)(numeric_only=False)
tm.assert_frame_equal(result.reindex_like(expected), expected)

# TODO: min, max *should* handle
# categorical (ordered) dtype
expected_columns = Index(
[
"int",
"float",
"string",
"category_int",
"datetime",
"datetimetz",
"timedelta",
]
)
for attr in ["min", "max"]:
result = getattr(df.groupby("group"), attr)()
tm.assert_index_equal(result.columns, expected_columns)
expected_columns = expected.columns

result = getattr(df.groupby("group"), attr)(numeric_only=False)
tm.assert_index_equal(result.columns, expected_columns)
self._check(df, method, expected_columns, expected_columns_numeric)

expected_columns = Index(
[
"int",
"float",
"string",
"category_string",
"category_int",
"datetime",
"datetimetz",
"timedelta",
]
)
for attr in ["first", "last"]:
result = getattr(df.groupby("group"), attr)()
tm.assert_index_equal(result.columns, expected_columns)
@pytest.mark.parametrize("method", ["min", "max"])
def test_extrema(self, df, method):
# TODO: min, max *should* handle
# categorical (ordered) dtype

result = getattr(df.groupby("group"), attr)(numeric_only=False)
tm.assert_index_equal(result.columns, expected_columns)
expected_columns = Index(
[
"int",
"float",
"string",
"category_int",
"datetime",
"datetimetz",
"timedelta",
]
)
expected_columns_numeric = expected_columns

expected_columns = Index(["int", "float", "string", "category_int", "timedelta"])
self._check(df, method, expected_columns, expected_columns_numeric)

result = df.groupby("group").sum()
tm.assert_index_equal(result.columns, expected_columns_numeric)
@pytest.mark.parametrize("method", ["first", "last"])
def test_first_last(self, df, method):

result = df.groupby("group").sum(numeric_only=False)
tm.assert_index_equal(result.columns, expected_columns)
expected_columns = Index(
[
"int",
"float",
"string",
"category_string",
"category_int",
"datetime",
"datetimetz",
"timedelta",
]
)
expected_columns_numeric = expected_columns

expected_columns = Index(["int", "float", "category_int"])
for attr in ["prod", "cumprod"]:
result = getattr(df.groupby("group"), attr)()
tm.assert_index_equal(result.columns, expected_columns_numeric)
self._check(df, method, expected_columns, expected_columns_numeric)

result = getattr(df.groupby("group"), attr)(numeric_only=False)
tm.assert_index_equal(result.columns, expected_columns)
@pytest.mark.parametrize("method", ["sum", "cumsum"])
def test_sum_cumsum(self, df, method):

# like min, max, but don't include strings
expected_columns = Index(
["int", "float", "category_int", "datetime", "datetimetz", "timedelta"]
)
for attr in ["cummin", "cummax"]:
result = getattr(df.groupby("group"), attr)()
# GH 15561: numeric_only=False set by default like min/max
tm.assert_index_equal(result.columns, expected_columns)
expected_columns_numeric = Index(["int", "float", "category_int"])
expected_columns = Index(
["int", "float", "string", "category_int", "timedelta"]
)
if method == "cumsum":
# cumsum loses string
expected_columns = Index(["int", "float", "category_int", "timedelta"])

result = getattr(df.groupby("group"), attr)(numeric_only=False)
tm.assert_index_equal(result.columns, expected_columns)
self._check(df, method, expected_columns, expected_columns_numeric)

@pytest.mark.parametrize("method", ["prod", "cumprod"])
def test_prod_cumprod(self, df, method):

expected_columns = Index(["int", "float", "category_int"])
expected_columns_numeric = expected_columns

self._check(df, method, expected_columns, expected_columns_numeric)

expected_columns = Index(["int", "float", "category_int", "timedelta"])
@pytest.mark.parametrize("method", ["cummin", "cummax"])
def test_cummin_cummax(self, df, method):
# like min, max, but don't include strings
expected_columns = Index(
["int", "float", "category_int", "datetime", "datetimetz", "timedelta"]
)

# GH#15561: numeric_only=False set by default like min/max
expected_columns_numeric = expected_columns

self._check(df, method, expected_columns, expected_columns_numeric)

result = getattr(df.groupby("group"), "cumsum")()
tm.assert_index_equal(result.columns, expected_columns_numeric)
def _check(self, df, method, expected_columns, expected_columns_numeric):
gb = df.groupby("group")

result = getattr(df.groupby("group"), "cumsum")(numeric_only=False)
tm.assert_index_equal(result.columns, expected_columns)
result = getattr(gb, method)()
tm.assert_index_equal(result.columns, expected_columns_numeric)

result = getattr(gb, method)(numeric_only=False)
tm.assert_index_equal(result.columns, expected_columns)


class TestGroupByNonCythonPaths:
Expand Down