Skip to content

Computer vision examples #190

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 6 commits into from
Sep 9, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
85 changes: 85 additions & 0 deletions examples/computer_vision/fast.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,85 @@
#!/usr/bin/env python

#######################################################
# Copyright (c) 2018, ArrayFire
# All rights reserved.
#
# This file is distributed under 3-clause BSD license.
# The complete license agreement can be obtained at:
# http://arrayfire.com/licenses/BSD-3-Clause
########################################################

from time import time
import arrayfire as af
import os
import sys

def draw_corners(img, x, y, draw_len):
# Draw vertical line of (draw_len * 2 + 1) pixels centered on the corner
# Set only the first channel to 1 (green lines)
xmin = max(0, x - draw_len)
xmax = min(img.dims()[1], x + draw_len)

img[y, xmin : xmax, 0] = 0.0
img[y, xmin : xmax, 1] = 1.0
img[y, xmin : xmax, 2] = 0.0

# Draw vertical line of (draw_len * 2 + 1) pixels centered on the corner
# Set only the first channel to 1 (green lines)
ymin = int(max(0, y - draw_len))
ymax = int(min(img.dims()[0], y + draw_len))

img[ymin : ymax, x, 0] = 0.0
img[ymin : ymax, x, 1] = 1.0
img[ymin : ymax, x, 2] = 0.0
return img

def fast_demo(console):

root_path = os.path.dirname(os.path.abspath(__file__))
file_path = root_path
if console:
file_path += "/../../assets/examples/images/square.png"
else:
file_path += "/../../assets/examples/images/man.jpg"
img_color = af.load_image(file_path, True);

img = af.color_space(img_color, af.CSPACE.GRAY, af.CSPACE.RGB)
img_color /= 255.0

features = af.fast(img)

xs = features.get_xpos().to_list()
ys = features.get_ypos().to_list()

draw_len = 3;
num_features = features.num_features().value
for f in range(num_features):
print(f)
x = xs[f]
y = ys[f]

img_color = draw_corners(img_color, x, y, draw_len)


print("Features found: {}".format(num_features))
if not console:
# Previews color image with green crosshairs
wnd = af.Window(512, 512, "FAST Feature Detector")

while not wnd.close():
wnd.image(img_color)
else:
print(xs);
print(ys);


if __name__ == "__main__":
if (len(sys.argv) > 1):
af.set_device(int(sys.argv[1]))
console = (sys.argv[2] == '-') if len(sys.argv) > 2 else False

af.info()
print("** ArrayFire FAST Feature Detector Demo **\n")
fast_demo(console)

123 changes: 123 additions & 0 deletions examples/computer_vision/harris.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,123 @@
#!/usr/bin/env python

#######################################################
# Copyright (c) 2018, ArrayFire
# All rights reserved.
#
# This file is distributed under 3-clause BSD license.
# The complete license agreement can be obtained at:
# http://arrayfire.com/licenses/BSD-3-Clause
########################################################

from time import time
import arrayfire as af
import os
import sys

def draw_corners(img, x, y, draw_len):
# Draw vertical line of (draw_len * 2 + 1) pixels centered on the corner
# Set only the first channel to 1 (green lines)
xmin = max(0, x - draw_len)
xmax = min(img.dims()[1], x + draw_len)

img[y, xmin : xmax, 0] = 0.0
img[y, xmin : xmax, 1] = 1.0
img[y, xmin : xmax, 2] = 0.0

# Draw vertical line of (draw_len * 2 + 1) pixels centered on the corner
# Set only the first channel to 1 (green lines)
ymin = max(0, y - draw_len)
ymax = min(img.dims()[0], y + draw_len)

img[ymin : ymax, x, 0] = 0.0
img[ymin : ymax, x, 1] = 1.0
img[ymin : ymax, x, 2] = 0.0
return img

def harris_demo(console):

root_path = os.path.dirname(os.path.abspath(__file__))
file_path = root_path
if console:
file_path += "/../../assets/examples/images/square.png"
else:
file_path += "/../../assets/examples/images/man.jpg"
img_color = af.load_image(file_path, True);

img = af.color_space(img_color, af.CSPACE.GRAY, af.CSPACE.RGB)
img_color /= 255.0

ix, iy = af.gradient(img)
ixx = ix * ix
ixy = ix * iy
iyy = iy * iy

# Compute a Gaussian kernel with standard deviation of 1.0 and length of 5 pixels
# These values can be changed to use a smaller or larger window
gauss_filt = af.gaussian_kernel(5, 5, 1.0, 1.0)

# Filter second order derivatives
ixx = af.convolve(ixx, gauss_filt)
ixy = af.convolve(ixy, gauss_filt)
iyy = af.convolve(iyy, gauss_filt)

# Calculate trace
itr = ixx + iyy

# Calculate determinant
idet = ixx * iyy - ixy * ixy

# Calculate Harris response
response = idet - 0.04 * (itr * itr)

# Get maximum response for each 3x3 neighborhood
mask = af.constant(1, 3, 3)
max_resp = af.dilate(response, mask)

# Discard responses that are not greater than threshold
corners = response > 1e5
corners = corners * response

# Discard responses that are not equal to maximum neighborhood response,
# scale them to original value
corners = (corners == max_resp) * corners

# Copy device array to python list on host
corners_list = corners.to_list()

draw_len = 3
good_corners = 0
for x in range(img_color.dims()[1]):
for y in range(img_color.dims()[0]):
if corners_list[x][y] > 1e5:
img_color = draw_corners(img_color, x, y, draw_len)
good_corners += 1


print("Corners found: {}".format(good_corners))
if not console:
# Previews color image with green crosshairs
wnd = af.Window(512, 512, "Harris Feature Detector")

while not wnd.close():
wnd.image(img_color)
else:
idx = af.where(corners)

corners_x = idx / float(corners.dims()[0])
corners_y = idx % float(corners.dims()[0])

print(corners_x)
print(corners_y)


if __name__ == "__main__":
if (len(sys.argv) > 1):
af.set_device(int(sys.argv[1]))
console = (sys.argv[2] == '-') if len(sys.argv) > 2 else False

af.info()
print("** ArrayFire Harris Corner Detector Demo **\n")

harris_demo(console)

109 changes: 109 additions & 0 deletions examples/computer_vision/matching.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,109 @@
#!/usr/bin/env python

#######################################################
# Copyright (c) 2018, ArrayFire
# All rights reserved.
#
# This file is distributed under 3-clause BSD license.
# The complete license agreement can be obtained at:
# http://arrayfire.com/licenses/BSD-3-Clause
########################################################

from time import time
import arrayfire as af
import os
import sys

def normalize(a):
max_ = float(af.max(a))
min_ = float(af.min(a))
return (a - min_) / (max_ - min_)

def draw_rectangle(img, x, y, wx, wy):
print("\nMatching patch origin = ({}, {})\n".format(x, y))

# top edge
img[y, x : x + wx, 0] = 0.0
img[y, x : x + wx, 1] = 0.0
img[y, x : x + wx, 2] = 1.0

# bottom edge
img[y + wy, x : x + wx, 0] = 0.0
img[y + wy, x : x + wx, 1] = 0.0
img[y + wy, x : x + wx, 2] = 1.0

# left edge
img[y : y + wy, x, 0] = 0.0
img[y : y + wy, x, 1] = 0.0
img[y : y + wy, x, 2] = 1.0

# left edge
img[y : y + wy, x + wx, 0] = 0.0
img[y : y + wy, x + wx, 1] = 0.0
img[y : y + wy, x + wx, 2] = 1.0

return img

def templateMatchingDemo(console):

root_path = os.path.dirname(os.path.abspath(__file__))
file_path = root_path
if console:
file_path += "/../../assets/examples/images/square.png"
else:
file_path += "/../../assets/examples/images/man.jpg"
img_color = af.load_image(file_path, True);

# Convert the image from RGB to gray-scale
img = af.color_space(img_color, af.CSPACE.GRAY, af.CSPACE.RGB)
iDims = img.dims()
print("Input image dimensions: ", iDims)

# Extract a patch from the input image
patch_size = 100
tmp_img = img[100 : 100+patch_size, 100 : 100+patch_size]

result = af.match_template(img, tmp_img) # Default disparity metric is
# Sum of Absolute differences (SAD)
# Currently supported metrics are
# AF_SAD, AF_ZSAD, AF_LSAD, AF_SSD,
# AF_ZSSD, AF_LSSD

disp_img = img / 255.0
disp_tmp = tmp_img / 255.0
disp_res = normalize(result)

minval, minloc = af.imin(disp_res)
print("Location(linear index) of minimum disparity value = {}".format(minloc))

if not console:
marked_res = af.tile(disp_img, 1, 1, 3)
marked_res = draw_rectangle(marked_res, minloc%iDims[0], minloc/iDims[0],\
patch_size, patch_size)

print("Note: Based on the disparity metric option provided to matchTemplate function")
print("either minimum or maximum disparity location is the starting corner")
print("of our best matching patch to template image in the search image")

wnd = af.Window(512, 512, "Template Matching Demo")

while not wnd.close():
wnd.set_colormap(af.COLORMAP.DEFAULT)
wnd.grid(2, 2)
wnd[0, 0].image(disp_img, "Search Image" )
wnd[0, 1].image(disp_tmp, "Template Patch" )
wnd[1, 0].image(marked_res, "Best Match" )
wnd.set_colormap(af.COLORMAP.HEAT)
wnd[1, 1].image(disp_res, "Disparity Values")
wnd.show()


if __name__ == "__main__":
if (len(sys.argv) > 1):
af.set_device(int(sys.argv[1]))
console = (sys.argv[2] == '-') if len(sys.argv) > 2 else False

af.info()
print("** ArrayFire template matching Demo **\n")
templateMatchingDemo(console)

Loading