|
| 1 | +# SPDX-License-Identifier: Apache-2.0 |
| 2 | + |
| 3 | +from collections.abc import Sequence |
| 4 | +from typing import Optional |
| 5 | + |
| 6 | +import pytest |
| 7 | +from transformers import AutoModelForSpeechSeq2Seq |
| 8 | + |
| 9 | +from vllm.lora.request import LoRARequest |
| 10 | +from vllm.sequence import SampleLogprobs |
| 11 | + |
| 12 | +from ....conftest import HfRunner, PromptAudioInput, VllmRunner, _AudioAssets |
| 13 | +from ...registry import HF_EXAMPLE_MODELS |
| 14 | +from ...utils import check_logprobs_close |
| 15 | + |
| 16 | +HF_AUDIO_PROMPT = "<|start_of_role|>system<|end_of_role|>Knowledge Cutoff Date: April 2024.\nToday's Date: December 19, 2024.\nYou are Granite, developed by IBM. You are a helpful AI assistant<|end_of_text|>\n<|start_of_role|>user<|end_of_role|><|audio|>can you transcribe the speech into a written format?<|end_of_text|>\n<|start_of_role|>assistant<|end_of_role|>" # noqa: E501 |
| 17 | + |
| 18 | + |
| 19 | +def vllm_to_hf_output( |
| 20 | + vllm_output: tuple[list[int], str, Optional[SampleLogprobs]], |
| 21 | +) -> tuple[list[int], str, Optional[SampleLogprobs]]: |
| 22 | + """Sanitize hf output to be comparable with vllm output.""" |
| 23 | + output_ids, output_str, out_logprobs = vllm_output |
| 24 | + |
| 25 | + hf_output_str = output_str + "<|end_of_text|>" |
| 26 | + |
| 27 | + return output_ids, hf_output_str, out_logprobs |
| 28 | + |
| 29 | + |
| 30 | +MODEL_NAME = "ibm-granite/granite-speech-3.3-8b" |
| 31 | +# Audio lora co-exists directly in the model directory, but |
| 32 | +# currently still needs to be passed directly to vLLM. |
| 33 | +audio_lora_path = MODEL_NAME |
| 34 | +models = [MODEL_NAME] |
| 35 | + |
| 36 | + |
| 37 | +def run_test( |
| 38 | + hf_runner: type[HfRunner], |
| 39 | + vllm_runner: type[VllmRunner], |
| 40 | + inputs: Sequence[tuple[list[str], PromptAudioInput]], |
| 41 | + model: str, |
| 42 | + *, |
| 43 | + max_model_len: int, |
| 44 | + dtype: str, |
| 45 | + max_tokens: int, |
| 46 | + num_logprobs: int, |
| 47 | + tensor_parallel_size: int, |
| 48 | + distributed_executor_backend: Optional[str] = None, |
| 49 | +): |
| 50 | + """Inference result should be the same between hf and vllm. |
| 51 | +
|
| 52 | + All the audio fixtures for the test are from AUDIO_ASSETS. |
| 53 | + For huggingface runner, we provide the audio as input. |
| 54 | + For vllm runner, we provide MultiModalDataDict objects |
| 55 | + and corresponding MultiModalConfig as input. |
| 56 | + Note, the text input is also adjusted to abide by vllm contract. |
| 57 | + The text output is sanitized to be able to compare with hf. |
| 58 | + """ |
| 59 | + # NOTE: take care of the order. run vLLM first, and then run HF. |
| 60 | + # vLLM needs a fresh new process without cuda initialization. |
| 61 | + # if we run HF first, the cuda initialization will be done and it |
| 62 | + # will hurt multiprocessing backend with fork method (the default method). |
| 63 | + # max_model_len should be greater than image_feature_size |
| 64 | + with vllm_runner( |
| 65 | + model, |
| 66 | + task="generate", |
| 67 | + max_model_len=max_model_len, |
| 68 | + max_num_seqs=1, |
| 69 | + dtype=dtype, |
| 70 | + limit_mm_per_prompt={"audio": 1}, |
| 71 | + tensor_parallel_size=tensor_parallel_size, |
| 72 | + distributed_executor_backend=distributed_executor_backend, |
| 73 | + enable_lora=True, |
| 74 | + max_lora_rank=64, |
| 75 | + enforce_eager=True, |
| 76 | + ) as vllm_model: |
| 77 | + lora_request = LoRARequest("audio", 1, audio_lora_path) |
| 78 | + vllm_outputs_per_case = [ |
| 79 | + vllm_model.generate_greedy_logprobs(prompts, |
| 80 | + max_tokens, |
| 81 | + num_logprobs=num_logprobs, |
| 82 | + audios=audios, |
| 83 | + lora_request=lora_request) |
| 84 | + for prompts, audios in inputs |
| 85 | + ] |
| 86 | + |
| 87 | + with hf_runner(model, dtype=dtype, |
| 88 | + auto_cls=AutoModelForSpeechSeq2Seq) as hf_model: |
| 89 | + |
| 90 | + hf_processor = hf_model.processor |
| 91 | + eos_token_id = hf_processor.tokenizer.eos_token_id |
| 92 | + |
| 93 | + hf_outputs_per_case = [ |
| 94 | + hf_model.generate_greedy_logprobs_limit(prompts, |
| 95 | + max_tokens, |
| 96 | + num_logprobs=num_logprobs, |
| 97 | + audios=[audios], |
| 98 | + eos_token_id=eos_token_id) |
| 99 | + for prompts, audios in inputs |
| 100 | + ] |
| 101 | + |
| 102 | + for hf_outputs, vllm_outputs in zip(hf_outputs_per_case, |
| 103 | + vllm_outputs_per_case): |
| 104 | + check_logprobs_close( |
| 105 | + outputs_0_lst=hf_outputs, |
| 106 | + outputs_1_lst=[ |
| 107 | + vllm_to_hf_output(output) for output in vllm_outputs |
| 108 | + ], |
| 109 | + name_0="hf", |
| 110 | + name_1="vllm", |
| 111 | + ) |
| 112 | + |
| 113 | + |
| 114 | +@pytest.mark.parametrize("model", models) |
| 115 | +@pytest.mark.parametrize("dtype", ["bfloat16"]) |
| 116 | +@pytest.mark.parametrize("max_model_len", [2048]) |
| 117 | +@pytest.mark.parametrize("max_tokens", [128]) |
| 118 | +@pytest.mark.parametrize("num_logprobs", [10]) |
| 119 | +def test_models(hf_runner, vllm_runner, model, audio_assets: _AudioAssets, |
| 120 | + dtype: str, max_model_len: int, max_tokens: int, |
| 121 | + num_logprobs: int) -> None: |
| 122 | + model_info = HF_EXAMPLE_MODELS.find_hf_info(model) |
| 123 | + model_info.check_available_online(on_fail="skip") |
| 124 | + model_info.check_transformers_version(on_fail="skip") |
| 125 | + |
| 126 | + audio, sr = audio_assets[0].audio_and_sample_rate |
| 127 | + # This model expects 16k sample rate, which our test audio |
| 128 | + # already is; if this changes, it may break this test, |
| 129 | + # so we check it directly |
| 130 | + assert sr == 16000 |
| 131 | + run_test( |
| 132 | + hf_runner, |
| 133 | + vllm_runner, |
| 134 | + [[[HF_AUDIO_PROMPT], [audio]]], |
| 135 | + model, |
| 136 | + dtype=dtype, |
| 137 | + max_model_len=max_model_len, |
| 138 | + max_tokens=max_tokens, |
| 139 | + num_logprobs=num_logprobs, |
| 140 | + tensor_parallel_size=1, |
| 141 | + ) |
0 commit comments