-FlexAttention X86 CPU support was first introduced in PyTorch 2.6, offering optimized implementations — such as PageAttention, which is critical for LLM inference—via the TorchInductor C++ backend. In PyTorch 2.7, more attention variants for first token processing of LLMs are supported. With this feature, users can have a smoother experience running FlexAttention on x86 CPUs, replacing specific *scaled_dot_product_attention* operators with a unified FlexAttention API, and benefiting from general support and good performance when using torch.compile.
0 commit comments