|
| 1 | +import random |
| 2 | + |
| 3 | +import hagelkorn |
| 4 | +import numpy |
| 5 | +import pytest |
| 6 | + |
| 7 | +from mcbackend.backends.null import NullBackend, NullChain, NullRun |
| 8 | +from mcbackend.core import RunMeta, is_rigid |
| 9 | +from mcbackend.meta import Variable |
| 10 | +from mcbackend.test_utils import CheckBehavior, CheckPerformance, make_runmeta, make_draw |
| 11 | + |
| 12 | +class CheckNullBehavior(CheckBehavior): |
| 13 | + """ |
| 14 | + Overrides tests which assert that data are recorded correctly |
| 15 | + We perform all the operations of the original test, but in the |
| 16 | + end we do the opposite: assert that an exception is raised |
| 17 | + when either `get_draws` or `get_draws_at` is called. |
| 18 | + Stats are still recorded, so that part of the tests is reproduced unchanged. |
| 19 | + """ |
| 20 | + |
| 21 | + @pytest.mark.parametrize("with_stats", [False, True]) |
| 22 | + def test__append_get_at(self, with_stats): |
| 23 | + rmeta = make_runmeta() |
| 24 | + run = self.backend.init_run(rmeta) |
| 25 | + chain = run.init_chain(7) |
| 26 | + |
| 27 | + # Generate data |
| 28 | + draw = make_draw(rmeta.variables) |
| 29 | + stats = make_draw(rmeta.sample_stats) if with_stats else None |
| 30 | + |
| 31 | + # Append to the chain |
| 32 | + assert len(chain) == 0 |
| 33 | + chain.append(draw, stats) |
| 34 | + assert len(chain) == 1 |
| 35 | + |
| 36 | + # Retrieve by index - Raises exception |
| 37 | + with pytest.raises(RuntimeError): |
| 38 | + chain.get_draws_at(0, [v.name for v in rmeta.variables]) |
| 39 | + |
| 40 | + # NB: Stats are still recorded and can be retrieved as with other chains |
| 41 | + if with_stats: |
| 42 | + actual = chain.get_stats_at(0, [v.name for v in rmeta.sample_stats]) |
| 43 | + assert isinstance(actual, dict) |
| 44 | + assert set(actual) == set(stats) |
| 45 | + for vn, act in actual.items(): |
| 46 | + numpy.testing.assert_array_equal(act, stats[vn]) |
| 47 | + pass |
| 48 | + |
| 49 | + @pytest.mark.parametrize("with_stats", [False, True]) |
| 50 | + def test__append_get_with_changelings(self, with_stats): |
| 51 | + rmeta = make_runmeta(flexibility=True) |
| 52 | + run = self.backend.init_run(rmeta) |
| 53 | + chain = run.init_chain(7) |
| 54 | + |
| 55 | + # Generate draws and add them to the chain |
| 56 | + n = 10 |
| 57 | + draws = [make_draw(rmeta.variables) for _ in range(n)] |
| 58 | + if with_stats: |
| 59 | + stats = [make_draw(rmeta.sample_stats) for _ in range(n)] |
| 60 | + else: |
| 61 | + stats = [None] * n |
| 62 | + |
| 63 | + for d, s in zip(draws, stats): |
| 64 | + chain.append(d, s) |
| 65 | + |
| 66 | + # Fetching variables raises exception |
| 67 | + for var in rmeta.variables: |
| 68 | + expected = [draw[var.name] for draw in draws] |
| 69 | + with pytest.raises(RuntimeError): |
| 70 | + chain.get_draws(var.name) |
| 71 | + |
| 72 | + if with_stats: |
| 73 | + for var in rmeta.sample_stats: |
| 74 | + expected = [stat[var.name] for stat in stats] |
| 75 | + actual = chain.get_stats(var.name) |
| 76 | + assert isinstance(actual, numpy.ndarray) |
| 77 | + if var.dtype == "str": |
| 78 | + assert tuple(actual.shape) == tuple(numpy.shape(expected)) |
| 79 | + # String dtypes have strange names |
| 80 | + assert "str" in actual.dtype.name |
| 81 | + elif is_rigid(var.shape): |
| 82 | + assert tuple(actual.shape) == tuple(numpy.shape(expected)) |
| 83 | + assert actual.dtype.name == var.dtype |
| 84 | + numpy.testing.assert_array_equal(actual, expected) |
| 85 | + else: |
| 86 | + # Non-ridid variables are returned as object-arrays. |
| 87 | + assert actual.shape == (len(expected),) |
| 88 | + assert actual.dtype == object |
| 89 | + # Their values must be asserted elementwise to avoid shape problems. |
| 90 | + for act, exp in zip(actual, expected): |
| 91 | + numpy.testing.assert_array_equal(act, exp) |
| 92 | + pass |
| 93 | + |
| 94 | + @pytest.mark.parametrize( |
| 95 | + "slc", |
| 96 | + [ |
| 97 | + None, |
| 98 | + slice(None, None, None), |
| 99 | + slice(2, None, None), |
| 100 | + slice(2, 10, None), |
| 101 | + slice(2, 15, 3), # every 3rd |
| 102 | + slice(15, 2, -3), # backwards every 3rd |
| 103 | + slice(2, 15, -3), # empty |
| 104 | + slice(-8, None, None), # the last 8 |
| 105 | + slice(-8, -2, 2), |
| 106 | + slice(-50, -2, 2), |
| 107 | + slice(15, 10), # empty |
| 108 | + slice(1, 1), # empty |
| 109 | + ], |
| 110 | + ) |
| 111 | + def test__get_slicing(self, slc: slice): |
| 112 | + # "A" are just numbers to make diagnosis easier. |
| 113 | + # "B" are dynamically shaped to cover the edge cases. |
| 114 | + rmeta = RunMeta( |
| 115 | + variables=[Variable("A", "uint8"), Variable("M", "str", [2, 3])], |
| 116 | + sample_stats=[Variable("B", "uint8", [2, -1])], |
| 117 | + data=[], |
| 118 | + ) |
| 119 | + run = self.backend.init_run(rmeta) |
| 120 | + chain = run.init_chain(0) |
| 121 | + |
| 122 | + # Generate draws and add them to the chain |
| 123 | + N = 20 |
| 124 | + draws = [make_draw(rmeta.variables) for n in range(N)] |
| 125 | + stats = [make_draw(rmeta.sample_stats) for n in range(N)] |
| 126 | + for d, s in zip(draws, stats): |
| 127 | + chain.append(d, s) |
| 128 | + assert len(chain) == N |
| 129 | + |
| 130 | + # slc=None in this test means "don't pass it". |
| 131 | + # The implementations should default to slc=slice(None, None, None). |
| 132 | + kwargs = dict(slc=slc) if slc is not None else {} |
| 133 | + with pytest.raises(RuntimeError): |
| 134 | + chain.get_draws("A", **kwargs) |
| 135 | + with pytest.raises(RuntimeError): |
| 136 | + chain.get_draws("M", **kwargs) |
| 137 | + act_stats = chain.get_stats("B", **kwargs) |
| 138 | + expected_stats = [s["B"] for s in stats][slc or slice(None, None, None)] |
| 139 | + |
| 140 | + # Stat "B" is dynamically shaped, which means we're dealing with |
| 141 | + # dtype=object arrays. These must be checked elementwise. |
| 142 | + assert len(act_stats) == len(expected_stats) |
| 143 | + assert act_stats.dtype == object |
| 144 | + for a, e in zip(act_stats, expected_stats): |
| 145 | + numpy.testing.assert_array_equal(a, e) |
| 146 | + pass |
| 147 | + |
| 148 | + def test__to_inferencedata(self): |
| 149 | + """ |
| 150 | + NullBackend doesn’t support `to_inferencedata`, so there isn’t |
| 151 | + anything to test here. |
| 152 | + """ |
| 153 | + pass |
| 154 | + |
| 155 | +class TestNullBackend(CheckNullBehavior, CheckPerformance): |
| 156 | + cls_backend = NullBackend |
| 157 | + cls_run = NullRun |
| 158 | + cls_chain = NullChain |
| 159 | + |
| 160 | + # `test_targets` and `test_growing` are copied over from TestNumPyBackend. |
| 161 | + # The lines testing sample storage removed, since neither `_samples` |
| 162 | + # nor `_var_is_rigid` are not supported by NullBackend. |
| 163 | + # However if one were to add tests for `_stats` and `_stat_is_rigid` |
| 164 | + # to the NumPy suite, we could port those here. |
| 165 | + |
| 166 | + def test_targets(self): |
| 167 | + imb = NullBackend(preallocate=123) |
| 168 | + rm = RunMeta( |
| 169 | + rid=hagelkorn.random(), |
| 170 | + variables=[ |
| 171 | + Variable("tensor", "int8", (3, 4, 5)), |
| 172 | + Variable("scalar", "float64", ()), |
| 173 | + Variable("changeling", "uint16", (3, -1)), |
| 174 | + ], |
| 175 | + ) |
| 176 | + run = imb.init_run(rm) |
| 177 | + chain = run.init_chain(0) |
| 178 | + pass |
| 179 | + |
| 180 | + @pytest.mark.parametrize("preallocate", [0, 75]) |
| 181 | + def test_growing(self, preallocate): |
| 182 | + imb = NullBackend(preallocate=preallocate) |
| 183 | + rm = RunMeta( |
| 184 | + rid=hagelkorn.random(), |
| 185 | + variables=[ |
| 186 | + Variable( |
| 187 | + "A", |
| 188 | + "float32", |
| 189 | + (2,), |
| 190 | + ), |
| 191 | + Variable( |
| 192 | + "B", |
| 193 | + "float32", |
| 194 | + (-1,), |
| 195 | + ), |
| 196 | + ], |
| 197 | + ) |
| 198 | + run = imb.init_run(rm) |
| 199 | + chain = run.init_chain(0) |
| 200 | + # TODO: Check dimensions of stats array ? |
| 201 | + for _ in range(130): |
| 202 | + draw = { |
| 203 | + "A": numpy.random.uniform(size=(2,)), |
| 204 | + "B": numpy.random.uniform(size=(random.randint(0, 10),)), |
| 205 | + } |
| 206 | + chain.append(draw) |
| 207 | + # TODO: Check dimensions of stats array ? |
| 208 | + pass |
| 209 | + |
| 210 | +if __name__ == "__main__": |
| 211 | + tc = TestNullBackend() |
| 212 | + df = tc.run_all_benchmarks() |
| 213 | + print(df) |
0 commit comments