diff --git a/pandas/core/arrays/categorical.py b/pandas/core/arrays/categorical.py
index 5f4bd801429a4..704914fb964fb 100644
--- a/pandas/core/arrays/categorical.py
+++ b/pandas/core/arrays/categorical.py
@@ -232,7 +232,7 @@ class Categorical(ExtensionArray, PandasObject):
`categories` attribute (which in turn is the `categories` argument, if
provided).
dtype : CategoricalDtype
- An instance of ``CategoricalDtype`` to use for this categorical
+ An instance of ``CategoricalDtype`` to use for this categorical.
.. versionadded:: 0.21.0
diff --git a/pandas/core/arrays/datetimes.py b/pandas/core/arrays/datetimes.py
index eb762a23d684d..aeb953031ae89 100644
--- a/pandas/core/arrays/datetimes.py
+++ b/pandas/core/arrays/datetimes.py
@@ -230,12 +230,12 @@ class DatetimeArray(dtl.DatetimeLikeArrayMixin, dtl.TimelikeOps, dtl.DatelikeOps
The datetime data.
For DatetimeArray `values` (or a Series or Index boxing one),
- `dtype` and `freq` will be extracted from `values`, with
- precedence given to
+ `dtype` and `freq` will be extracted from `values`.
dtype : numpy.dtype or DatetimeTZDtype
Note that the only NumPy dtype allowed is 'datetime64[ns]'.
freq : str or Offset, optional
+ The frequency.
copy : bool, default False
Whether to copy the underlying array of values.
diff --git a/pandas/core/arrays/period.py b/pandas/core/arrays/period.py
index 1eeb9ddc8e064..854d9067f2f2a 100644
--- a/pandas/core/arrays/period.py
+++ b/pandas/core/arrays/period.py
@@ -440,8 +440,9 @@ def to_timestamp(self, freq=None, how="start"):
----------
freq : str or DateOffset, optional
Target frequency. The default is 'D' for week or longer,
- 'S' otherwise
+ 'S' otherwise.
how : {'s', 'e', 'start', 'end'}
+ Whether to use the start or end of the time period being converted.
Returns
-------
@@ -528,17 +529,20 @@ def asfreq(self, freq=None, how="E"):
Parameters
----------
freq : str
- a frequency
+ A frequency.
how : str {'E', 'S'}
- 'E', 'END', or 'FINISH' for end,
- 'S', 'START', or 'BEGIN' for start.
Whether the elements should be aligned to the end
- or start within pa period. January 31st ('END') vs.
- January 1st ('START') for example.
+ or start within pa period.
+
+ * 'E', 'END', or 'FINISH' for end,
+ * 'S', 'START', or 'BEGIN' for start.
+
+ January 31st ('END') vs. January 1st ('START') for example.
Returns
-------
- new : Period Array/Index with the new frequency
+ Period Array/Index
+ Constructed with the new frequency.
Examples
--------
diff --git a/pandas/core/frame.py b/pandas/core/frame.py
index b69199defbcc4..f58cce8693e15 100644
--- a/pandas/core/frame.py
+++ b/pandas/core/frame.py
@@ -142,11 +142,12 @@
Name or list of names to sort by.
- if `axis` is 0 or `'index'` then `by` may contain index
- levels and/or column labels
+ levels and/or column labels.
- if `axis` is 1 or `'columns'` then `by` may contain column
- levels and/or index labels
+ levels and/or index labels.
.. versionchanged:: 0.23.0
+
Allow specifying index or column level names.""",
versionadded_to_excel="",
optional_labels="""labels : array-like, optional
@@ -2148,9 +2149,10 @@ def to_html(
A ``border=border`` attribute is included in the opening
`
` tag. Default ``pd.options.display.html.border``.
encoding : str, default "utf-8"
- Set character encoding
+ Set character encoding.
.. versionadded:: 1.0
+
table_id : str, optional
A css id is included in the opening `` tag if specified.
@@ -7877,7 +7879,7 @@ def idxmin(self, axis=0, skipna=True):
Parameters
----------
axis : {0 or 'index', 1 or 'columns'}, default 0
- The axis to use. 0 or 'index' for row-wise, 1 or 'columns' for column-wise
+ The axis to use. 0 or 'index' for row-wise, 1 or 'columns' for column-wise.
skipna : bool, default True
Exclude NA/null values. If an entire row/column is NA, the result
will be NA.
@@ -7915,7 +7917,7 @@ def idxmax(self, axis=0, skipna=True):
Parameters
----------
axis : {0 or 'index', 1 or 'columns'}, default 0
- The axis to use. 0 or 'index' for row-wise, 1 or 'columns' for column-wise
+ The axis to use. 0 or 'index' for row-wise, 1 or 'columns' for column-wise.
skipna : bool, default True
Exclude NA/null values. If an entire row/column is NA, the result
will be NA.
diff --git a/pandas/core/groupby/groupby.py b/pandas/core/groupby/groupby.py
index 81a9145318cb5..5f543181cfb4e 100644
--- a/pandas/core/groupby/groupby.py
+++ b/pandas/core/groupby/groupby.py
@@ -2099,17 +2099,17 @@ def rank(
Parameters
----------
method : {'average', 'min', 'max', 'first', 'dense'}, default 'average'
- * average: average rank of group
- * min: lowest rank in group
- * max: highest rank in group
- * first: ranks assigned in order they appear in the array
- * dense: like 'min', but rank always increases by 1 between groups
+ * average: average rank of group.
+ * min: lowest rank in group.
+ * max: highest rank in group.
+ * first: ranks assigned in order they appear in the array.
+ * dense: like 'min', but rank always increases by 1 between groups.
ascending : bool, default True
False for ranks by high (1) to low (N).
na_option : {'keep', 'top', 'bottom'}, default 'keep'
- * keep: leave NA values where they are
- * top: smallest rank if ascending
- * bottom: smallest rank if descending
+ * keep: leave NA values where they are.
+ * top: smallest rank if ascending.
+ * bottom: smallest rank if descending.
pct : bool, default False
Compute percentage rank of data within each group.
axis : int, default 0
diff --git a/pandas/core/groupby/grouper.py b/pandas/core/groupby/grouper.py
index 747a32ae816be..05a5458f60cf5 100644
--- a/pandas/core/groupby/grouper.py
+++ b/pandas/core/groupby/grouper.py
@@ -34,8 +34,7 @@
class Grouper:
"""
- A Grouper allows the user to specify a groupby instruction for a target
- object.
+ A Grouper allows the user to specify a groupby instruction for an object.
This specification will select a column via the key parameter, or if the
level and/or axis parameters are given, a level of the index of the target
@@ -47,17 +46,18 @@ class Grouper:
Parameters
----------
key : str, defaults to None
- groupby key, which selects the grouping column of the target
+ Groupby key, which selects the grouping column of the target.
level : name/number, defaults to None
- the level for the target index
+ The level for the target index.
freq : str / frequency object, defaults to None
This will groupby the specified frequency if the target selection
(via key or level) is a datetime-like object. For full specification
of available frequencies, please see `here
`_.
- axis : number/name of the axis, defaults to 0
+ axis : str, int, defaults to 0
+ Number/name of the axis.
sort : bool, default to False
- whether to sort the resulting labels
+ Whether to sort the resulting labels.
closed : {'left' or 'right'}
Closed end of interval. Only when `freq` parameter is passed.
label : {'left' or 'right'}
diff --git a/pandas/core/indexes/period.py b/pandas/core/indexes/period.py
index 022e3ba674a27..7d96f1611c9ba 100644
--- a/pandas/core/indexes/period.py
+++ b/pandas/core/indexes/period.py
@@ -79,8 +79,7 @@ class PeriodDelegateMixin(DatetimelikeDelegateMixin):
)
class PeriodIndex(DatetimeIndexOpsMixin, Int64Index, PeriodDelegateMixin):
"""
- Immutable ndarray holding ordinal values indicating regular periods in
- time such as particular years, quarters, months, etc.
+ Immutable ndarray holding ordinal values indicating regular periods in time.
Index keys are boxed to Period objects which carries the metadata (eg,
frequency information).
@@ -88,9 +87,9 @@ class PeriodIndex(DatetimeIndexOpsMixin, Int64Index, PeriodDelegateMixin):
Parameters
----------
data : array-like (1d int np.ndarray or PeriodArray), optional
- Optional period-like data to construct index with
+ Optional period-like data to construct index with.
copy : bool
- Make a copy of input ndarray
+ Make a copy of input ndarray.
freq : str or period object, optional
One of pandas period strings or corresponding objects
year : int, array, or Series, default None
@@ -101,7 +100,7 @@ class PeriodIndex(DatetimeIndexOpsMixin, Int64Index, PeriodDelegateMixin):
minute : int, array, or Series, default None
second : int, array, or Series, default None
tz : object, default None
- Timezone for converting datetime64 data to Periods
+ Timezone for converting datetime64 data to Periods.
dtype : str or PeriodDtype, default None
Attributes
diff --git a/pandas/core/window/ewm.py b/pandas/core/window/ewm.py
index baecba7e78384..441a8756f09e0 100644
--- a/pandas/core/window/ewm.py
+++ b/pandas/core/window/ewm.py
@@ -314,7 +314,7 @@ def cov(self, other=None, pairwise=None, bias=False, **kwargs):
inputs. In the case of missing elements, only complete pairwise
observations will be used.
bias : bool, default False
- Use a standard estimation bias correction
+ Use a standard estimation bias correction.
**kwargs
Keyword arguments to be passed into func.
"""
diff --git a/pandas/io/excel/_base.py b/pandas/io/excel/_base.py
index fe13fce83161d..dfcd4b9a606cd 100644
--- a/pandas/io/excel/_base.py
+++ b/pandas/io/excel/_base.py
@@ -526,8 +526,10 @@ def parse(
class ExcelWriter(metaclass=abc.ABCMeta):
"""
- Class for writing DataFrame objects into excel sheets, default is to use
- xlwt for xls, openpyxl for xlsx. See DataFrame.to_excel for typical usage.
+ Class for writing DataFrame objects into excel sheets.
+
+ Default is to use xlwt for xls, openpyxl for xlsx.
+ See DataFrame.to_excel for typical usage.
Parameters
----------
@@ -541,7 +543,7 @@ class ExcelWriter(metaclass=abc.ABCMeta):
Format string for dates written into Excel files (e.g. 'YYYY-MM-DD').
datetime_format : str, default None
Format string for datetime objects written into Excel files.
- (e.g. 'YYYY-MM-DD HH:MM:SS')
+ (e.g. 'YYYY-MM-DD HH:MM:SS').
mode : {'w', 'a'}, default 'w'
File mode to use (write or append).