diff --git a/pandas/tests/indexing/multiindex/test_getitem.py b/pandas/tests/indexing/multiindex/test_getitem.py index efc1ebcbecee7..64625d6c74d8f 100644 --- a/pandas/tests/indexing/multiindex/test_getitem.py +++ b/pandas/tests/indexing/multiindex/test_getitem.py @@ -1,5 +1,3 @@ -from warnings import catch_warnings, simplefilter - import numpy as np import pytest @@ -11,335 +9,337 @@ from pandas.util import testing as tm -@pytest.mark.filterwarnings("ignore:\\n.ix:DeprecationWarning") -class TestMultiIndexGetItem(object): - - def test_series_getitem_multiindex(self): - - # GH 6018 - # series regression getitem with a multi-index - - s = Series([1, 2, 3]) - s.index = MultiIndex.from_tuples([(0, 0), (1, 1), (2, 1)]) - - result = s[:, 0] - expected = Series([1], index=[0]) - tm.assert_series_equal(result, expected) - - result = s.loc[:, 1] - expected = Series([2, 3], index=[1, 2]) - tm.assert_series_equal(result, expected) - - # xs - result = s.xs(0, level=0) - expected = Series([1], index=[0]) - tm.assert_series_equal(result, expected) - - result = s.xs(1, level=1) - expected = Series([2, 3], index=[1, 2]) - tm.assert_series_equal(result, expected) - - # GH6258 - dt = list(date_range('20130903', periods=3)) - idx = MultiIndex.from_product([list('AB'), dt]) - s = Series([1, 3, 4, 1, 3, 4], index=idx) - - result = s.xs('20130903', level=1) - expected = Series([1, 1], index=list('AB')) - tm.assert_series_equal(result, expected) - - # GH5684 - idx = MultiIndex.from_tuples([('a', 'one'), ('a', 'two'), ('b', 'one'), - ('b', 'two')]) - s = Series([1, 2, 3, 4], index=idx) - s.index.set_names(['L1', 'L2'], inplace=True) - result = s.xs('one', level='L2') - expected = Series([1, 3], index=['a', 'b']) - expected.index.set_names(['L1'], inplace=True) - tm.assert_series_equal(result, expected) - - def test_getitem_duplicates_multiindex(self): - # GH 5725 the 'A' happens to be a valid Timestamp so the doesn't raise - # the appropriate error, only in PY3 of course! - - index = MultiIndex(levels=[['D', 'B', 'C'], - [0, 26, 27, 37, 57, 67, 75, 82]], - labels=[[0, 0, 0, 1, 2, 2, 2, 2, 2, 2], - [1, 3, 4, 6, 0, 2, 2, 3, 5, 7]], - names=['tag', 'day']) - arr = np.random.randn(len(index), 1) - df = DataFrame(arr, index=index, columns=['val']) - result = df.val['D'] - expected = Series(arr.ravel()[0:3], name='val', index=Index( - [26, 37, 57], name='day')) - tm.assert_series_equal(result, expected) - - def f(): - df.val['A'] - - pytest.raises(KeyError, f) - - def f(): - df.val['X'] - - pytest.raises(KeyError, f) - - # A is treated as a special Timestamp - index = MultiIndex(levels=[['A', 'B', 'C'], - [0, 26, 27, 37, 57, 67, 75, 82]], - labels=[[0, 0, 0, 1, 2, 2, 2, 2, 2, 2], - [1, 3, 4, 6, 0, 2, 2, 3, 5, 7]], - names=['tag', 'day']) - df = DataFrame(arr, index=index, columns=['val']) - result = df.val['A'] - expected = Series(arr.ravel()[0:3], name='val', index=Index( - [26, 37, 57], name='day')) - tm.assert_series_equal(result, expected) - - def f(): - df.val['X'] - - pytest.raises(KeyError, f) - - # GH 7866 - # multi-index slicing with missing indexers - idx = MultiIndex.from_product([['A', 'B', 'C'], - ['foo', 'bar', 'baz']], +def test_series_getitem_multiindex(): + + # GH 6018 + # series regression getitem with a multi-index + + s = Series([1, 2, 3]) + s.index = MultiIndex.from_tuples([(0, 0), (1, 1), (2, 1)]) + + result = s[:, 0] + expected = Series([1], index=[0]) + tm.assert_series_equal(result, expected) + + result = s.loc[:, 1] + expected = Series([2, 3], index=[1, 2]) + tm.assert_series_equal(result, expected) + + # xs + result = s.xs(0, level=0) + expected = Series([1], index=[0]) + tm.assert_series_equal(result, expected) + + result = s.xs(1, level=1) + expected = Series([2, 3], index=[1, 2]) + tm.assert_series_equal(result, expected) + + # GH6258 + dt = list(date_range('20130903', periods=3)) + idx = MultiIndex.from_product([list('AB'), dt]) + s = Series([1, 3, 4, 1, 3, 4], index=idx) + + result = s.xs('20130903', level=1) + expected = Series([1, 1], index=list('AB')) + tm.assert_series_equal(result, expected) + + # GH5684 + idx = MultiIndex.from_tuples([('a', 'one'), ('a', 'two'), ('b', 'one'), + ('b', 'two')]) + s = Series([1, 2, 3, 4], index=idx) + s.index.set_names(['L1', 'L2'], inplace=True) + result = s.xs('one', level='L2') + expected = Series([1, 3], index=['a', 'b']) + expected.index.set_names(['L1'], inplace=True) + tm.assert_series_equal(result, expected) + + +def test_getitem_duplicates_multiindex(): + # GH 5725 the 'A' happens to be a valid Timestamp so the doesn't raise + # the appropriate error, only in PY3 of course! + + index = MultiIndex(levels=[['D', 'B', 'C'], + [0, 26, 27, 37, 57, 67, 75, 82]], + labels=[[0, 0, 0, 1, 2, 2, 2, 2, 2, 2], + [1, 3, 4, 6, 0, 2, 2, 3, 5, 7]], + names=['tag', 'day']) + arr = np.random.randn(len(index), 1) + df = DataFrame(arr, index=index, columns=['val']) + result = df.val['D'] + expected = Series(arr.ravel()[0:3], name='val', index=Index( + [26, 37, 57], name='day')) + tm.assert_series_equal(result, expected) + + def f(): + df.val['A'] + + pytest.raises(KeyError, f) + + def f(): + df.val['X'] + + pytest.raises(KeyError, f) + + # A is treated as a special Timestamp + index = MultiIndex(levels=[['A', 'B', 'C'], + [0, 26, 27, 37, 57, 67, 75, 82]], + labels=[[0, 0, 0, 1, 2, 2, 2, 2, 2, 2], + [1, 3, 4, 6, 0, 2, 2, 3, 5, 7]], + names=['tag', 'day']) + df = DataFrame(arr, index=index, columns=['val']) + result = df.val['A'] + expected = Series(arr.ravel()[0:3], name='val', index=Index( + [26, 37, 57], name='day')) + tm.assert_series_equal(result, expected) + + def f(): + df.val['X'] + + pytest.raises(KeyError, f) + + # GH 7866 + # multi-index slicing with missing indexers + idx = MultiIndex.from_product([['A', 'B', 'C'], + ['foo', 'bar', 'baz']], + names=['one', 'two']) + s = Series(np.arange(9, dtype='int64'), index=idx).sort_index() + + exp_idx = MultiIndex.from_product([['A'], ['foo', 'bar', 'baz']], names=['one', 'two']) - s = Series(np.arange(9, dtype='int64'), index=idx).sort_index() - - exp_idx = MultiIndex.from_product([['A'], ['foo', 'bar', 'baz']], - names=['one', 'two']) - expected = Series(np.arange(3, dtype='int64'), - index=exp_idx).sort_index() - - result = s.loc[['A']] - tm.assert_series_equal(result, expected) - result = s.loc[['A', 'D']] - tm.assert_series_equal(result, expected) - - # not any values found - pytest.raises(KeyError, lambda: s.loc[['D']]) - - # empty ok - result = s.loc[[]] - expected = s.iloc[[]] - tm.assert_series_equal(result, expected) - - idx = pd.IndexSlice - expected = Series([0, 3, 6], index=MultiIndex.from_product( - [['A', 'B', 'C'], ['foo']], names=['one', 'two'])).sort_index() - - result = s.loc[idx[:, ['foo']]] - tm.assert_series_equal(result, expected) - result = s.loc[idx[:, ['foo', 'bah']]] - tm.assert_series_equal(result, expected) - - # GH 8737 - # empty indexer - multi_index = MultiIndex.from_product((['foo', 'bar', 'baz'], - ['alpha', 'beta'])) - df = DataFrame( - np.random.randn(5, 6), index=range(5), columns=multi_index) - df = df.sort_index(level=0, axis=1) - - expected = DataFrame(index=range(5), - columns=multi_index.reindex([])[0]) - result1 = df.loc[:, ([], slice(None))] - result2 = df.loc[:, (['foo'], [])] - tm.assert_frame_equal(result1, expected) - tm.assert_frame_equal(result2, expected) - - # regression from < 0.14.0 - # GH 7914 - df = DataFrame([[np.mean, np.median], ['mean', 'median']], - columns=MultiIndex.from_tuples([('functs', 'mean'), - ('functs', 'median')]), - index=['function', 'name']) - result = df.loc['function', ('functs', 'mean')] - assert result == np.mean - - def test_getitem_simple(self, multiindex_dataframe_random_data): - frame = multiindex_dataframe_random_data - df = frame.T - - col = df['foo', 'one'] - tm.assert_almost_equal(col.values, df.values[:, 0]) - with pytest.raises(KeyError): - df[('foo', 'four')] - with pytest.raises(KeyError): - df['foobar'] - - def test_series_getitem( - self, multiindex_year_month_day_dataframe_random_data): - ymd = multiindex_year_month_day_dataframe_random_data - s = ymd['A'] - - result = s[2000, 3] - - # TODO(wesm): unused? - # result2 = s.loc[2000, 3] - - expected = s.reindex(s.index[42:65]) - expected.index = expected.index.droplevel(0).droplevel(0) - tm.assert_series_equal(result, expected) - - result = s[2000, 3, 10] - expected = s[49] - assert result == expected - - # fancy - expected = s.reindex(s.index[49:51]) - result = s.loc[[(2000, 3, 10), (2000, 3, 13)]] - tm.assert_series_equal(result, expected) - - with catch_warnings(record=True): - simplefilter("ignore", DeprecationWarning) - result = s.ix[[(2000, 3, 10), (2000, 3, 13)]] - tm.assert_series_equal(result, expected) - - # key error - pytest.raises(KeyError, s.__getitem__, (2000, 3, 4)) - - def test_series_getitem_corner( - self, multiindex_year_month_day_dataframe_random_data): - ymd = multiindex_year_month_day_dataframe_random_data - s = ymd['A'] - - # don't segfault, GH #495 - # out of bounds access - pytest.raises(IndexError, s.__getitem__, len(ymd)) - - # generator - result = s[(x > 0 for x in s)] - expected = s[s > 0] - tm.assert_series_equal(result, expected) - - def test_frame_getitem_multicolumn_empty_level(self): - f = DataFrame({'a': ['1', '2', '3'], 'b': ['2', '3', '4']}) - f.columns = [['level1 item1', 'level1 item2'], ['', 'level2 item2'], - ['level3 item1', 'level3 item2']] - - result = f['level1 item1'] - expected = DataFrame([['1'], ['2'], ['3']], index=f.index, - columns=['level3 item1']) - tm.assert_frame_equal(result, expected) - - def test_getitem_tuple_plus_slice(self): - # GH #671 - df = DataFrame({'a': lrange(10), - 'b': lrange(10), - 'c': np.random.randn(10), - 'd': np.random.randn(10)}) - - idf = df.set_index(['a', 'b']) - - result = idf.loc[(0, 0), :] - expected = idf.loc[0, 0] - expected2 = idf.xs((0, 0)) - with catch_warnings(record=True): - simplefilter("ignore", DeprecationWarning) - expected3 = idf.ix[0, 0] - - tm.assert_series_equal(result, expected) - tm.assert_series_equal(result, expected2) - tm.assert_series_equal(result, expected3) - - def test_getitem_toplevel(self, multiindex_dataframe_random_data): - frame = multiindex_dataframe_random_data - df = frame.T - - result = df['foo'] - expected = df.reindex(columns=df.columns[:3]) - expected.columns = expected.columns.droplevel(0) - tm.assert_frame_equal(result, expected) - - result = df['bar'] - result2 = df.loc[:, 'bar'] - - expected = df.reindex(columns=df.columns[3:5]) - expected.columns = expected.columns.droplevel(0) - tm.assert_frame_equal(result, expected) - tm.assert_frame_equal(result, result2) - - def test_getitem_int(self, multiindex_dataframe_random_data): - levels = [[0, 1], [0, 1, 2]] - labels = [[0, 0, 0, 1, 1, 1], [0, 1, 2, 0, 1, 2]] - index = MultiIndex(levels=levels, labels=labels) - - frame = DataFrame(np.random.randn(6, 2), index=index) - - result = frame.loc[1] - expected = frame[-3:] - expected.index = expected.index.droplevel(0) - tm.assert_frame_equal(result, expected) - - # raises exception - pytest.raises(KeyError, frame.loc.__getitem__, 3) - - # however this will work - frame = multiindex_dataframe_random_data - result = frame.iloc[2] - expected = frame.xs(frame.index[2]) - tm.assert_series_equal(result, expected) - - def test_frame_getitem_view(self, multiindex_dataframe_random_data): - frame = multiindex_dataframe_random_data - df = frame.T.copy() - - # this works because we are modifying the underlying array - # really a no-no - df['foo'].values[:] = 0 - assert (df['foo'].values == 0).all() - - # but not if it's mixed-type - df['foo', 'four'] = 'foo' - df = df.sort_index(level=0, axis=1) - - # this will work, but will raise/warn as its chained assignment - def f(): - df['foo']['one'] = 2 - return df - - pytest.raises(com.SettingWithCopyError, f) - - try: - df = f() - except ValueError: - pass - assert (df['foo', 'one'] == 0).all() - - def test_getitem_lowerdim_corner(self, multiindex_dataframe_random_data): - frame = multiindex_dataframe_random_data - pytest.raises(KeyError, frame.loc.__getitem__, - (('bar', 'three'), 'B')) - - # in theory should be inserting in a sorted space???? - frame.loc[('bar', 'three'), 'B'] = 0 - assert frame.sort_index().loc[('bar', 'three'), 'B'] == 0 - - @pytest.mark.parametrize('unicode_strings', [True, False]) - def test_mixed_depth_get(self, unicode_strings): - # If unicode_strings is True, the column labels in dataframe - # construction will use unicode strings in Python 2 (pull request - # #17099). - - arrays = [['a', 'top', 'top', 'routine1', 'routine1', 'routine2'], - ['', 'OD', 'OD', 'result1', 'result2', 'result1'], - ['', 'wx', 'wy', '', '', '']] - - if unicode_strings: - arrays = [[u(s) for s in arr] for arr in arrays] - - tuples = sorted(zip(*arrays)) - index = MultiIndex.from_tuples(tuples) - df = DataFrame(np.random.randn(4, 6), columns=index) - - result = df['a'] - expected = df['a', '', ''].rename('a') - tm.assert_series_equal(result, expected) - - result = df['routine1', 'result1'] - expected = df['routine1', 'result1', ''] - expected = expected.rename(('routine1', 'result1')) - tm.assert_series_equal(result, expected) + expected = Series(np.arange(3, dtype='int64'), + index=exp_idx).sort_index() + + result = s.loc[['A']] + tm.assert_series_equal(result, expected) + result = s.loc[['A', 'D']] + tm.assert_series_equal(result, expected) + + # not any values found + pytest.raises(KeyError, lambda: s.loc[['D']]) + + # empty ok + result = s.loc[[]] + expected = s.iloc[[]] + tm.assert_series_equal(result, expected) + + idx = pd.IndexSlice + expected = Series([0, 3, 6], index=MultiIndex.from_product( + [['A', 'B', 'C'], ['foo']], names=['one', 'two'])).sort_index() + + result = s.loc[idx[:, ['foo']]] + tm.assert_series_equal(result, expected) + result = s.loc[idx[:, ['foo', 'bah']]] + tm.assert_series_equal(result, expected) + + # GH 8737 + # empty indexer + multi_index = MultiIndex.from_product((['foo', 'bar', 'baz'], + ['alpha', 'beta'])) + df = DataFrame(np.random.randn(5, 6), index=range(5), columns=multi_index) + df = df.sort_index(level=0, axis=1) + + expected = DataFrame(index=range(5), columns=multi_index.reindex([])[0]) + result1 = df.loc[:, ([], slice(None))] + result2 = df.loc[:, (['foo'], [])] + tm.assert_frame_equal(result1, expected) + tm.assert_frame_equal(result2, expected) + + # regression from < 0.14.0 + # GH 7914 + df = DataFrame([[np.mean, np.median], ['mean', 'median']], + columns=MultiIndex.from_tuples([('functs', 'mean'), + ('functs', 'median')]), + index=['function', 'name']) + result = df.loc['function', ('functs', 'mean')] + assert result == np.mean + + +def test_getitem_simple(multiindex_dataframe_random_data): + frame = multiindex_dataframe_random_data + df = frame.T + + col = df['foo', 'one'] + tm.assert_almost_equal(col.values, df.values[:, 0]) + with pytest.raises(KeyError): + df[('foo', 'four')] + with pytest.raises(KeyError): + df['foobar'] + + +@pytest.mark.filterwarnings("ignore:\\n.ix:DeprecationWarning") +def test_series_getitem(multiindex_year_month_day_dataframe_random_data): + ymd = multiindex_year_month_day_dataframe_random_data + s = ymd['A'] + + result = s[2000, 3] + + # TODO(wesm): unused? + # result2 = s.loc[2000, 3] + + expected = s.reindex(s.index[42:65]) + expected.index = expected.index.droplevel(0).droplevel(0) + tm.assert_series_equal(result, expected) + + result = s[2000, 3, 10] + expected = s[49] + assert result == expected + + # fancy + expected = s.reindex(s.index[49:51]) + result = s.loc[[(2000, 3, 10), (2000, 3, 13)]] + tm.assert_series_equal(result, expected) + + result = s.ix[[(2000, 3, 10), (2000, 3, 13)]] + tm.assert_series_equal(result, expected) + + # key error + pytest.raises(KeyError, s.__getitem__, (2000, 3, 4)) + + +def test_series_getitem_corner( + multiindex_year_month_day_dataframe_random_data): + ymd = multiindex_year_month_day_dataframe_random_data + s = ymd['A'] + + # don't segfault, GH #495 + # out of bounds access + pytest.raises(IndexError, s.__getitem__, len(ymd)) + + # generator + result = s[(x > 0 for x in s)] + expected = s[s > 0] + tm.assert_series_equal(result, expected) + + +def test_frame_getitem_multicolumn_empty_level(): + f = DataFrame({'a': ['1', '2', '3'], 'b': ['2', '3', '4']}) + f.columns = [['level1 item1', 'level1 item2'], ['', 'level2 item2'], + ['level3 item1', 'level3 item2']] + + result = f['level1 item1'] + expected = DataFrame([['1'], ['2'], ['3']], index=f.index, + columns=['level3 item1']) + tm.assert_frame_equal(result, expected) + + +@pytest.mark.filterwarnings("ignore:\\n.ix:DeprecationWarning") +def test_getitem_tuple_plus_slice(): + # GH #671 + df = DataFrame({'a': lrange(10), + 'b': lrange(10), + 'c': np.random.randn(10), + 'd': np.random.randn(10)}) + + idf = df.set_index(['a', 'b']) + + result = idf.loc[(0, 0), :] + expected = idf.loc[0, 0] + expected2 = idf.xs((0, 0)) + expected3 = idf.ix[0, 0] + + tm.assert_series_equal(result, expected) + tm.assert_series_equal(result, expected2) + tm.assert_series_equal(result, expected3) + + +def test_getitem_toplevel(multiindex_dataframe_random_data): + frame = multiindex_dataframe_random_data + df = frame.T + + result = df['foo'] + expected = df.reindex(columns=df.columns[:3]) + expected.columns = expected.columns.droplevel(0) + tm.assert_frame_equal(result, expected) + + result = df['bar'] + result2 = df.loc[:, 'bar'] + + expected = df.reindex(columns=df.columns[3:5]) + expected.columns = expected.columns.droplevel(0) + tm.assert_frame_equal(result, expected) + tm.assert_frame_equal(result, result2) + + +def test_getitem_int(multiindex_dataframe_random_data): + levels = [[0, 1], [0, 1, 2]] + labels = [[0, 0, 0, 1, 1, 1], [0, 1, 2, 0, 1, 2]] + index = MultiIndex(levels=levels, labels=labels) + + frame = DataFrame(np.random.randn(6, 2), index=index) + + result = frame.loc[1] + expected = frame[-3:] + expected.index = expected.index.droplevel(0) + tm.assert_frame_equal(result, expected) + + # raises exception + pytest.raises(KeyError, frame.loc.__getitem__, 3) + + # however this will work + frame = multiindex_dataframe_random_data + result = frame.iloc[2] + expected = frame.xs(frame.index[2]) + tm.assert_series_equal(result, expected) + + +def test_frame_getitem_view(multiindex_dataframe_random_data): + frame = multiindex_dataframe_random_data + df = frame.T.copy() + + # this works because we are modifying the underlying array + # really a no-no + df['foo'].values[:] = 0 + assert (df['foo'].values == 0).all() + + # but not if it's mixed-type + df['foo', 'four'] = 'foo' + df = df.sort_index(level=0, axis=1) + + # this will work, but will raise/warn as its chained assignment + def f(): + df['foo']['one'] = 2 + return df + + pytest.raises(com.SettingWithCopyError, f) + + try: + df = f() + except ValueError: + pass + assert (df['foo', 'one'] == 0).all() + + +def test_getitem_lowerdim_corner(multiindex_dataframe_random_data): + frame = multiindex_dataframe_random_data + pytest.raises(KeyError, frame.loc.__getitem__, (('bar', 'three'), 'B')) + + # in theory should be inserting in a sorted space???? + frame.loc[('bar', 'three'), 'B'] = 0 + assert frame.sort_index().loc[('bar', 'three'), 'B'] == 0 + + +@pytest.mark.parametrize('unicode_strings', [True, False]) +def test_mixed_depth_get(unicode_strings): + # If unicode_strings is True, the column labels in dataframe + # construction will use unicode strings in Python 2 (pull request + # #17099). + + arrays = [['a', 'top', 'top', 'routine1', 'routine1', 'routine2'], + ['', 'OD', 'OD', 'result1', 'result2', 'result1'], + ['', 'wx', 'wy', '', '', '']] + + if unicode_strings: + arrays = [[u(s) for s in arr] for arr in arrays] + + tuples = sorted(zip(*arrays)) + index = MultiIndex.from_tuples(tuples) + df = DataFrame(np.random.randn(4, 6), columns=index) + + result = df['a'] + expected = df['a', '', ''].rename('a') + tm.assert_series_equal(result, expected) + + result = df['routine1', 'result1'] + expected = df['routine1', 'result1', ''] + expected = expected.rename(('routine1', 'result1')) + tm.assert_series_equal(result, expected) diff --git a/pandas/tests/indexing/multiindex/test_iloc.py b/pandas/tests/indexing/multiindex/test_iloc.py index c0d05197d89c4..898f56b48ccfc 100644 --- a/pandas/tests/indexing/multiindex/test_iloc.py +++ b/pandas/tests/indexing/multiindex/test_iloc.py @@ -1,5 +1,3 @@ -from warnings import catch_warnings - import numpy as np import pytest @@ -7,123 +5,119 @@ from pandas.util import testing as tm -@pytest.mark.filterwarnings("ignore:\\n.ix:DeprecationWarning") -class TestMultiIndexIloc(object): +def test_iloc_getitem_multiindex2(): + # TODO(wesm): fix this + pytest.skip('this test was being suppressed, ' + 'needs to be fixed') + + arr = np.random.randn(3, 3) + df = DataFrame(arr, columns=[[2, 2, 4], [6, 8, 10]], + index=[[4, 4, 8], [8, 10, 12]]) + + rs = df.iloc[2] + xp = Series(arr[2], index=df.columns) + tm.assert_series_equal(rs, xp) + + rs = df.iloc[:, 2] + xp = Series(arr[:, 2], index=df.index) + tm.assert_series_equal(rs, xp) + + rs = df.iloc[2, 2] + xp = df.values[2, 2] + assert rs == xp + + # for multiple items + # GH 5528 + rs = df.iloc[[0, 1]] + xp = df.xs(4, drop_level=False) + tm.assert_frame_equal(rs, xp) - def test_iloc_getitem_multiindex2(self): - # TODO(wesm): fix this - pytest.skip('this test was being suppressed, ' - 'needs to be fixed') + tup = zip(*[['a', 'a', 'b', 'b'], ['x', 'y', 'x', 'y']]) + index = MultiIndex.from_tuples(tup) + df = DataFrame(np.random.randn(4, 4), index=index) + rs = df.iloc[[2, 3]] + xp = df.xs('b', drop_level=False) + tm.assert_frame_equal(rs, xp) - arr = np.random.randn(3, 3) - df = DataFrame(arr, columns=[[2, 2, 4], [6, 8, 10]], + +@pytest.mark.filterwarnings("ignore:\\n.ix:DeprecationWarning") +def test_iloc_getitem_multiindex(): + mi_labels = DataFrame(np.random.randn(4, 3), + columns=[['i', 'i', 'j'], ['A', 'A', 'B']], + index=[['i', 'i', 'j', 'k'], + ['X', 'X', 'Y', 'Y']]) + + mi_int = DataFrame(np.random.randn(3, 3), + columns=[[2, 2, 4], [6, 8, 10]], index=[[4, 4, 8], [8, 10, 12]]) - rs = df.iloc[2] - xp = Series(arr[2], index=df.columns) - tm.assert_series_equal(rs, xp) - - rs = df.iloc[:, 2] - xp = Series(arr[:, 2], index=df.index) - tm.assert_series_equal(rs, xp) - - rs = df.iloc[2, 2] - xp = df.values[2, 2] - assert rs == xp - - # for multiple items - # GH 5528 - rs = df.iloc[[0, 1]] - xp = df.xs(4, drop_level=False) - tm.assert_frame_equal(rs, xp) - - tup = zip(*[['a', 'a', 'b', 'b'], ['x', 'y', 'x', 'y']]) - index = MultiIndex.from_tuples(tup) - df = DataFrame(np.random.randn(4, 4), index=index) - rs = df.iloc[[2, 3]] - xp = df.xs('b', drop_level=False) - tm.assert_frame_equal(rs, xp) - - def test_iloc_getitem_multiindex(self): - mi_labels = DataFrame(np.random.randn(4, 3), - columns=[['i', 'i', 'j'], ['A', 'A', 'B']], - index=[['i', 'i', 'j', 'k'], - ['X', 'X', 'Y', 'Y']]) - - mi_int = DataFrame(np.random.randn(3, 3), - columns=[[2, 2, 4], [6, 8, 10]], - index=[[4, 4, 8], [8, 10, 12]]) - - # the first row - rs = mi_int.iloc[0] - with catch_warnings(record=True): - xp = mi_int.ix[4].ix[8] - tm.assert_series_equal(rs, xp, check_names=False) - assert rs.name == (4, 8) - assert xp.name == 8 - - # 2nd (last) columns - rs = mi_int.iloc[:, 2] - with catch_warnings(record=True): - xp = mi_int.ix[:, 2] - tm.assert_series_equal(rs, xp) - - # corner column - rs = mi_int.iloc[2, 2] - with catch_warnings(record=True): - # First level is int - so use .loc rather than .ix (GH 21593) - xp = mi_int.loc[(8, 12), (4, 10)] - assert rs == xp - - # this is basically regular indexing - rs = mi_labels.iloc[2, 2] - with catch_warnings(record=True): - xp = mi_labels.ix['j'].ix[:, 'j'].ix[0, 0] - assert rs == xp - - def test_frame_getitem_setitem_slice( - self, multiindex_dataframe_random_data): - frame = multiindex_dataframe_random_data - # getitem - result = frame.iloc[:4] - expected = frame[:4] - tm.assert_frame_equal(result, expected) - - # setitem - cp = frame.copy() - cp.iloc[:4] = 0 - - assert (cp.values[:4] == 0).all() - assert (cp.values[4:] != 0).all() - - def test_indexing_ambiguity_bug_1678(self): - columns = MultiIndex.from_tuples([('Ohio', 'Green'), ('Ohio', 'Red'), ( - 'Colorado', 'Green')]) - index = MultiIndex.from_tuples([('a', 1), ('a', 2), ('b', 1), ('b', 2) - ]) - - frame = DataFrame(np.arange(12).reshape((4, 3)), index=index, - columns=columns) - - result = frame.iloc[:, 1] - exp = frame.loc[:, ('Ohio', 'Red')] - assert isinstance(result, Series) - tm.assert_series_equal(result, exp) - - def test_iloc_mi(self): - # GH 13797 - # Test if iloc can handle integer locations in MultiIndexed DataFrame - - data = [['str00', 'str01'], ['str10', 'str11'], ['str20', 'srt21'], - ['str30', 'str31'], ['str40', 'str41']] - - mi = MultiIndex.from_tuples( - [('CC', 'A'), ('CC', 'B'), ('CC', 'B'), ('BB', 'a'), ('BB', 'b')]) - - expected = DataFrame(data) - df_mi = DataFrame(data, index=mi) - - result = DataFrame([[df_mi.iloc[r, c] for c in range(2)] - for r in range(5)]) - - tm.assert_frame_equal(result, expected) + # the first row + rs = mi_int.iloc[0] + xp = mi_int.ix[4].ix[8] + tm.assert_series_equal(rs, xp, check_names=False) + assert rs.name == (4, 8) + assert xp.name == 8 + + # 2nd (last) columns + rs = mi_int.iloc[:, 2] + xp = mi_int.ix[:, 2] + tm.assert_series_equal(rs, xp) + + # corner column + rs = mi_int.iloc[2, 2] + # First level is int - so use .loc rather than .ix (GH 21593) + xp = mi_int.loc[(8, 12), (4, 10)] + assert rs == xp + + # this is basically regular indexing + rs = mi_labels.iloc[2, 2] + xp = mi_labels.ix['j'].ix[:, 'j'].ix[0, 0] + assert rs == xp + + +def test_frame_getitem_setitem_slice(multiindex_dataframe_random_data): + frame = multiindex_dataframe_random_data + # getitem + result = frame.iloc[:4] + expected = frame[:4] + tm.assert_frame_equal(result, expected) + + # setitem + cp = frame.copy() + cp.iloc[:4] = 0 + + assert (cp.values[:4] == 0).all() + assert (cp.values[4:] != 0).all() + + +def test_indexing_ambiguity_bug_1678(): + columns = MultiIndex.from_tuples([('Ohio', 'Green'), ('Ohio', 'Red'), ( + 'Colorado', 'Green')]) + index = MultiIndex.from_tuples([('a', 1), ('a', 2), ('b', 1), ('b', 2)]) + + frame = DataFrame(np.arange(12).reshape((4, 3)), index=index, + columns=columns) + + result = frame.iloc[:, 1] + exp = frame.loc[:, ('Ohio', 'Red')] + assert isinstance(result, Series) + tm.assert_series_equal(result, exp) + + +def test_iloc_mi(): + # GH 13797 + # Test if iloc can handle integer locations in MultiIndexed DataFrame + + data = [['str00', 'str01'], ['str10', 'str11'], ['str20', 'srt21'], + ['str30', 'str31'], ['str40', 'str41']] + + mi = MultiIndex.from_tuples( + [('CC', 'A'), ('CC', 'B'), ('CC', 'B'), ('BB', 'a'), ('BB', 'b')]) + + expected = DataFrame(data) + df_mi = DataFrame(data, index=mi) + + result = DataFrame([[df_mi.iloc[r, c] for c in range(2)] + for r in range(5)]) + + tm.assert_frame_equal(result, expected) diff --git a/pandas/tests/indexing/multiindex/test_ix.py b/pandas/tests/indexing/multiindex/test_ix.py index 4e4e5674fdbd5..ecd47f2777b5d 100644 --- a/pandas/tests/indexing/multiindex/test_ix.py +++ b/pandas/tests/indexing/multiindex/test_ix.py @@ -1,27 +1,21 @@ -from warnings import catch_warnings, simplefilter - import pytest from pandas.compat import lrange @pytest.mark.filterwarnings("ignore:\\n.ix:DeprecationWarning") -class TestMultiIndexIx(object): - - def test_frame_setitem_ix(self, multiindex_dataframe_random_data): - frame = multiindex_dataframe_random_data - frame.loc[('bar', 'two'), 'B'] = 5 - assert frame.loc[('bar', 'two'), 'B'] == 5 +def test_frame_setitem_ix(multiindex_dataframe_random_data): + frame = multiindex_dataframe_random_data + frame.loc[('bar', 'two'), 'B'] = 5 + assert frame.loc[('bar', 'two'), 'B'] == 5 - # with integer labels - df = frame.copy() - df.columns = lrange(3) - df.loc[('bar', 'two'), 1] = 7 - assert df.loc[('bar', 'two'), 1] == 7 + # with integer labels + df = frame.copy() + df.columns = lrange(3) + df.loc[('bar', 'two'), 1] = 7 + assert df.loc[('bar', 'two'), 1] == 7 - with catch_warnings(record=True): - simplefilter("ignore", DeprecationWarning) - df = frame.copy() - df.columns = lrange(3) - df.ix[('bar', 'two'), 1] = 7 - assert df.loc[('bar', 'two'), 1] == 7 + df = frame.copy() + df.columns = lrange(3) + df.ix[('bar', 'two'), 1] = 7 + assert df.loc[('bar', 'two'), 1] == 7 diff --git a/pandas/tests/indexing/multiindex/test_loc.py b/pandas/tests/indexing/multiindex/test_loc.py index f31685641753e..eb2e8c1b38746 100644 --- a/pandas/tests/indexing/multiindex/test_loc.py +++ b/pandas/tests/indexing/multiindex/test_loc.py @@ -1,5 +1,3 @@ -from warnings import catch_warnings - import numpy as np import pytest @@ -14,164 +12,161 @@ def single_level_multiindex(): labels=[[0, 1, 2, 3]], names=['first']) +def test_loc_getitem_series(): + # GH14730 + # passing a series as a key with a MultiIndex + index = MultiIndex.from_product([[1, 2, 3], ['A', 'B', 'C']]) + x = Series(index=index, data=range(9), dtype=np.float64) + y = Series([1, 3]) + expected = Series( + data=[0, 1, 2, 6, 7, 8], + index=MultiIndex.from_product([[1, 3], ['A', 'B', 'C']]), + dtype=np.float64) + result = x.loc[y] + tm.assert_series_equal(result, expected) + + result = x.loc[[1, 3]] + tm.assert_series_equal(result, expected) + + # GH15424 + y1 = Series([1, 3], index=[1, 2]) + result = x.loc[y1] + tm.assert_series_equal(result, expected) + + empty = Series(data=[], dtype=np.float64) + expected = Series([], index=MultiIndex( + levels=index.levels, labels=[[], []], dtype=np.float64)) + result = x.loc[empty] + tm.assert_series_equal(result, expected) + + +def test_loc_getitem_array(): + # GH15434 + # passing an array as a key with a MultiIndex + index = MultiIndex.from_product([[1, 2, 3], ['A', 'B', 'C']]) + x = Series(index=index, data=range(9), dtype=np.float64) + y = np.array([1, 3]) + expected = Series( + data=[0, 1, 2, 6, 7, 8], + index=MultiIndex.from_product([[1, 3], ['A', 'B', 'C']]), + dtype=np.float64) + result = x.loc[y] + tm.assert_series_equal(result, expected) + + # empty array: + empty = np.array([]) + expected = Series([], index=MultiIndex( + levels=index.levels, labels=[[], []], dtype=np.float64)) + result = x.loc[empty] + tm.assert_series_equal(result, expected) + + # 0-dim array (scalar): + scalar = np.int64(1) + expected = Series( + data=[0, 1, 2], + index=['A', 'B', 'C'], + dtype=np.float64) + result = x.loc[scalar] + tm.assert_series_equal(result, expected) + + @pytest.mark.filterwarnings("ignore:\\n.ix:DeprecationWarning") -class TestMultiIndexLoc(object): - - def test_loc_getitem_series(self): - # GH14730 - # passing a series as a key with a MultiIndex - index = MultiIndex.from_product([[1, 2, 3], ['A', 'B', 'C']]) - x = Series(index=index, data=range(9), dtype=np.float64) - y = Series([1, 3]) - expected = Series( - data=[0, 1, 2, 6, 7, 8], - index=MultiIndex.from_product([[1, 3], ['A', 'B', 'C']]), - dtype=np.float64) - result = x.loc[y] - tm.assert_series_equal(result, expected) - - result = x.loc[[1, 3]] - tm.assert_series_equal(result, expected) - - # GH15424 - y1 = Series([1, 3], index=[1, 2]) - result = x.loc[y1] - tm.assert_series_equal(result, expected) - - empty = Series(data=[], dtype=np.float64) - expected = Series([], index=MultiIndex( - levels=index.levels, labels=[[], []], dtype=np.float64)) - result = x.loc[empty] - tm.assert_series_equal(result, expected) - - def test_loc_getitem_array(self): - # GH15434 - # passing an array as a key with a MultiIndex - index = MultiIndex.from_product([[1, 2, 3], ['A', 'B', 'C']]) - x = Series(index=index, data=range(9), dtype=np.float64) - y = np.array([1, 3]) - expected = Series( - data=[0, 1, 2, 6, 7, 8], - index=MultiIndex.from_product([[1, 3], ['A', 'B', 'C']]), - dtype=np.float64) - result = x.loc[y] - tm.assert_series_equal(result, expected) - - # empty array: - empty = np.array([]) - expected = Series([], index=MultiIndex( - levels=index.levels, labels=[[], []], dtype=np.float64)) - result = x.loc[empty] - tm.assert_series_equal(result, expected) - - # 0-dim array (scalar): - scalar = np.int64(1) - expected = Series( - data=[0, 1, 2], - index=['A', 'B', 'C'], - dtype=np.float64) - result = x.loc[scalar] - tm.assert_series_equal(result, expected) - - def test_loc_multiindex(self): - - mi_labels = DataFrame(np.random.randn(3, 3), - columns=[['i', 'i', 'j'], ['A', 'A', 'B']], - index=[['i', 'i', 'j'], ['X', 'X', 'Y']]) - - mi_int = DataFrame(np.random.randn(3, 3), - columns=[[2, 2, 4], [6, 8, 10]], - index=[[4, 4, 8], [8, 10, 12]]) - - # the first row - rs = mi_labels.loc['i'] - with catch_warnings(record=True): - xp = mi_labels.ix['i'] - tm.assert_frame_equal(rs, xp) - - # 2nd (last) columns - rs = mi_labels.loc[:, 'j'] - with catch_warnings(record=True): - xp = mi_labels.ix[:, 'j'] - tm.assert_frame_equal(rs, xp) - - # corner column - rs = mi_labels.loc['j'].loc[:, 'j'] - with catch_warnings(record=True): - xp = mi_labels.ix['j'].ix[:, 'j'] - tm.assert_frame_equal(rs, xp) - - # with a tuple - rs = mi_labels.loc[('i', 'X')] - with catch_warnings(record=True): - xp = mi_labels.ix[('i', 'X')] - tm.assert_frame_equal(rs, xp) - - rs = mi_int.loc[4] - with catch_warnings(record=True): - xp = mi_int.ix[4] - tm.assert_frame_equal(rs, xp) - - # missing label - pytest.raises(KeyError, lambda: mi_int.loc[2]) - with catch_warnings(record=True): - # GH 21593 - pytest.raises(KeyError, lambda: mi_int.ix[2]) - - def test_loc_multiindex_indexer_none(self): - - # GH6788 - # multi-index indexer is None (meaning take all) - attributes = ['Attribute' + str(i) for i in range(1)] - attribute_values = ['Value' + str(i) for i in range(5)] - - index = MultiIndex.from_product([attributes, attribute_values]) - df = 0.1 * np.random.randn(10, 1 * 5) + 0.5 - df = DataFrame(df, columns=index) - result = df[attributes] - tm.assert_frame_equal(result, df) - - # GH 7349 - # loc with a multi-index seems to be doing fallback - df = DataFrame(np.arange(12).reshape(-1, 1), - index=MultiIndex.from_product([[1, 2, 3, 4], - [1, 2, 3]])) - - expected = df.loc[([1, 2], ), :] - result = df.loc[[1, 2]] - tm.assert_frame_equal(result, expected) - - def test_loc_multiindex_incomplete(self): - - # GH 7399 - # incomplete indexers - s = Series(np.arange(15, dtype='int64'), - MultiIndex.from_product([range(5), ['a', 'b', 'c']])) - expected = s.loc[:, 'a':'c'] - - result = s.loc[0:4, 'a':'c'] - tm.assert_series_equal(result, expected) - tm.assert_series_equal(result, expected) - - result = s.loc[:4, 'a':'c'] - tm.assert_series_equal(result, expected) - tm.assert_series_equal(result, expected) - - result = s.loc[0:, 'a':'c'] - tm.assert_series_equal(result, expected) - tm.assert_series_equal(result, expected) - - # GH 7400 - # multiindexer gettitem with list of indexers skips wrong element - s = Series(np.arange(15, dtype='int64'), - MultiIndex.from_product([range(5), ['a', 'b', 'c']])) - expected = s.iloc[[6, 7, 8, 12, 13, 14]] - result = s.loc[2:4:2, 'a':'c'] - tm.assert_series_equal(result, expected) - - def test_get_loc_single_level(self, single_level_multiindex): - single_level = single_level_multiindex - s = Series(np.random.randn(len(single_level)), - index=single_level) - for k in single_level.values: - s[k] +def test_loc_multiindex(): + + mi_labels = DataFrame(np.random.randn(3, 3), + columns=[['i', 'i', 'j'], ['A', 'A', 'B']], + index=[['i', 'i', 'j'], ['X', 'X', 'Y']]) + + mi_int = DataFrame(np.random.randn(3, 3), + columns=[[2, 2, 4], [6, 8, 10]], + index=[[4, 4, 8], [8, 10, 12]]) + + # the first row + rs = mi_labels.loc['i'] + xp = mi_labels.ix['i'] + tm.assert_frame_equal(rs, xp) + + # 2nd (last) columns + rs = mi_labels.loc[:, 'j'] + xp = mi_labels.ix[:, 'j'] + tm.assert_frame_equal(rs, xp) + + # corner column + rs = mi_labels.loc['j'].loc[:, 'j'] + xp = mi_labels.ix['j'].ix[:, 'j'] + tm.assert_frame_equal(rs, xp) + + # with a tuple + rs = mi_labels.loc[('i', 'X')] + xp = mi_labels.ix[('i', 'X')] + tm.assert_frame_equal(rs, xp) + + rs = mi_int.loc[4] + xp = mi_int.ix[4] + tm.assert_frame_equal(rs, xp) + + # missing label + pytest.raises(KeyError, lambda: mi_int.loc[2]) + # GH 21593 + pytest.raises(KeyError, lambda: mi_int.ix[2]) + + +def test_loc_multiindex_indexer_none(): + + # GH6788 + # multi-index indexer is None (meaning take all) + attributes = ['Attribute' + str(i) for i in range(1)] + attribute_values = ['Value' + str(i) for i in range(5)] + + index = MultiIndex.from_product([attributes, attribute_values]) + df = 0.1 * np.random.randn(10, 1 * 5) + 0.5 + df = DataFrame(df, columns=index) + result = df[attributes] + tm.assert_frame_equal(result, df) + + # GH 7349 + # loc with a multi-index seems to be doing fallback + df = DataFrame(np.arange(12).reshape(-1, 1), + index=MultiIndex.from_product([[1, 2, 3, 4], + [1, 2, 3]])) + + expected = df.loc[([1, 2], ), :] + result = df.loc[[1, 2]] + tm.assert_frame_equal(result, expected) + + +def test_loc_multiindex_incomplete(): + + # GH 7399 + # incomplete indexers + s = Series(np.arange(15, dtype='int64'), + MultiIndex.from_product([range(5), ['a', 'b', 'c']])) + expected = s.loc[:, 'a':'c'] + + result = s.loc[0:4, 'a':'c'] + tm.assert_series_equal(result, expected) + tm.assert_series_equal(result, expected) + + result = s.loc[:4, 'a':'c'] + tm.assert_series_equal(result, expected) + tm.assert_series_equal(result, expected) + + result = s.loc[0:, 'a':'c'] + tm.assert_series_equal(result, expected) + tm.assert_series_equal(result, expected) + + # GH 7400 + # multiindexer gettitem with list of indexers skips wrong element + s = Series(np.arange(15, dtype='int64'), + MultiIndex.from_product([range(5), ['a', 'b', 'c']])) + expected = s.iloc[[6, 7, 8, 12, 13, 14]] + result = s.loc[2:4:2, 'a':'c'] + tm.assert_series_equal(result, expected) + + +def test_get_loc_single_level(single_level_multiindex): + single_level = single_level_multiindex + s = Series(np.random.randn(len(single_level)), + index=single_level) + for k in single_level.values: + s[k] diff --git a/pandas/tests/indexing/multiindex/test_multiindex.py b/pandas/tests/indexing/multiindex/test_multiindex.py index 1fefbc0b0f8ca..a15cd8c618c4a 100644 --- a/pandas/tests/indexing/multiindex/test_multiindex.py +++ b/pandas/tests/indexing/multiindex/test_multiindex.py @@ -10,62 +10,63 @@ from pandas.util import testing as tm -class TestMultiIndexBasic(object): - - def test_multiindex_perf_warn(self): - - df = DataFrame({'jim': [0, 0, 1, 1], - 'joe': ['x', 'x', 'z', 'y'], - 'jolie': np.random.rand(4)}).set_index(['jim', 'joe']) - - with tm.assert_produces_warning(PerformanceWarning, - clear=[pd.core.index]): - df.loc[(1, 'z')] - - df = df.iloc[[2, 1, 3, 0]] - with tm.assert_produces_warning(PerformanceWarning): - df.loc[(0, )] - - def test_multiindex_contains_dropped(self): - # GH 19027 - # test that dropped MultiIndex levels are not in the MultiIndex - # despite continuing to be in the MultiIndex's levels - idx = MultiIndex.from_product([[1, 2], [3, 4]]) - assert 2 in idx - idx = idx.drop(2) - - # drop implementation keeps 2 in the levels - assert 2 in idx.levels[0] - # but it should no longer be in the index itself - assert 2 not in idx - - # also applies to strings - idx = MultiIndex.from_product([['a', 'b'], ['c', 'd']]) - assert 'a' in idx - idx = idx.drop('a') - assert 'a' in idx.levels[0] - assert 'a' not in idx - - @pytest.mark.parametrize("data, expected", [ - (MultiIndex.from_product([(), ()]), True), - (MultiIndex.from_product([(1, 2), (3, 4)]), True), - (MultiIndex.from_product([('a', 'b'), (1, 2)]), False), - ]) - def test_multiindex_is_homogeneous_type(self, data, expected): - assert data._is_homogeneous_type is expected - - def test_indexing_over_hashtable_size_cutoff(self): - n = 10000 - - old_cutoff = _index._SIZE_CUTOFF - _index._SIZE_CUTOFF = 20000 - - s = Series(np.arange(n), - MultiIndex.from_arrays((["a"] * n, np.arange(n)))) - - # hai it works! - assert s[("a", 5)] == 5 - assert s[("a", 6)] == 6 - assert s[("a", 7)] == 7 - - _index._SIZE_CUTOFF = old_cutoff +def test_multiindex_perf_warn(): + + df = DataFrame({'jim': [0, 0, 1, 1], + 'joe': ['x', 'x', 'z', 'y'], + 'jolie': np.random.rand(4)}).set_index(['jim', 'joe']) + + with tm.assert_produces_warning(PerformanceWarning, + clear=[pd.core.index]): + df.loc[(1, 'z')] + + df = df.iloc[[2, 1, 3, 0]] + with tm.assert_produces_warning(PerformanceWarning): + df.loc[(0, )] + + +def test_multiindex_contains_dropped(): + # GH 19027 + # test that dropped MultiIndex levels are not in the MultiIndex + # despite continuing to be in the MultiIndex's levels + idx = MultiIndex.from_product([[1, 2], [3, 4]]) + assert 2 in idx + idx = idx.drop(2) + + # drop implementation keeps 2 in the levels + assert 2 in idx.levels[0] + # but it should no longer be in the index itself + assert 2 not in idx + + # also applies to strings + idx = MultiIndex.from_product([['a', 'b'], ['c', 'd']]) + assert 'a' in idx + idx = idx.drop('a') + assert 'a' in idx.levels[0] + assert 'a' not in idx + + +@pytest.mark.parametrize("data, expected", [ + (MultiIndex.from_product([(), ()]), True), + (MultiIndex.from_product([(1, 2), (3, 4)]), True), + (MultiIndex.from_product([('a', 'b'), (1, 2)]), False), +]) +def test_multiindex_is_homogeneous_type(data, expected): + assert data._is_homogeneous_type is expected + + +def test_indexing_over_hashtable_size_cutoff(): + n = 10000 + + old_cutoff = _index._SIZE_CUTOFF + _index._SIZE_CUTOFF = 20000 + + s = Series(np.arange(n), + MultiIndex.from_arrays((["a"] * n, np.arange(n)))) + + # hai it works! + assert s[("a", 5)] == 5 + assert s[("a", 6)] == 6 + assert s[("a", 7)] == 7 + + _index._SIZE_CUTOFF = old_cutoff diff --git a/pandas/tests/indexing/multiindex/test_panel.py b/pandas/tests/indexing/multiindex/test_panel.py index 68c8fadd2f0dd..837882fcb6d76 100644 --- a/pandas/tests/indexing/multiindex/test_panel.py +++ b/pandas/tests/indexing/multiindex/test_panel.py @@ -6,98 +6,98 @@ @pytest.mark.filterwarnings('ignore:\\nPanel:FutureWarning') -class TestMultiIndexPanel(object): - - def test_iloc_getitem_panel_multiindex(self): - - # GH 7199 - # Panel with multi-index - multi_index = MultiIndex.from_tuples([('ONE', 'one'), - ('TWO', 'two'), - ('THREE', 'three')], - names=['UPPER', 'lower']) - - simple_index = [x[0] for x in multi_index] - wd1 = Panel(items=['First', 'Second'], - major_axis=['a', 'b', 'c', 'd'], - minor_axis=multi_index) - - wd2 = Panel(items=['First', 'Second'], - major_axis=['a', 'b', 'c', 'd'], - minor_axis=simple_index) - - expected1 = wd1['First'].iloc[[True, True, True, False], [0, 2]] - result1 = wd1.iloc[0, [True, True, True, False], [0, 2]] # WRONG - tm.assert_frame_equal(result1, expected1) - - expected2 = wd2['First'].iloc[[True, True, True, False], [0, 2]] - result2 = wd2.iloc[0, [True, True, True, False], [0, 2]] - tm.assert_frame_equal(result2, expected2) - - expected1 = DataFrame(index=['a'], columns=multi_index, - dtype='float64') - result1 = wd1.iloc[0, [0], [0, 1, 2]] - tm.assert_frame_equal(result1, expected1) - - expected2 = DataFrame(index=['a'], columns=simple_index, - dtype='float64') - result2 = wd2.iloc[0, [0], [0, 1, 2]] - tm.assert_frame_equal(result2, expected2) - - # GH 7516 - mi = MultiIndex.from_tuples([(0, 'x'), (1, 'y'), (2, 'z')]) - p = Panel(np.arange(3 * 3 * 3, dtype='int64').reshape(3, 3, 3), - items=['a', 'b', 'c'], major_axis=mi, - minor_axis=['u', 'v', 'w']) - result = p.iloc[:, 1, 0] - expected = Series([3, 12, 21], index=['a', 'b', 'c'], name='u') - tm.assert_series_equal(result, expected) - - result = p.loc[:, (1, 'y'), 'u'] - tm.assert_series_equal(result, expected) - - def test_panel_setitem_with_multiindex(self): - - # 10360 - # failing with a multi-index - arr = np.array([[[1, 2, 3], [0, 0, 0]], - [[0, 0, 0], [0, 0, 0]]], - dtype=np.float64) - - # reg index - axes = dict(items=['A', 'B'], major_axis=[0, 1], - minor_axis=['X', 'Y', 'Z']) - p1 = Panel(0., **axes) - p1.iloc[0, 0, :] = [1, 2, 3] - expected = Panel(arr, **axes) - tm.assert_panel_equal(p1, expected) - - # multi-indexes - axes['items'] = MultiIndex.from_tuples( - [('A', 'a'), ('B', 'b')]) - p2 = Panel(0., **axes) - p2.iloc[0, 0, :] = [1, 2, 3] - expected = Panel(arr, **axes) - tm.assert_panel_equal(p2, expected) - - axes['major_axis'] = MultiIndex.from_tuples( - [('A', 1), ('A', 2)]) - p3 = Panel(0., **axes) - p3.iloc[0, 0, :] = [1, 2, 3] - expected = Panel(arr, **axes) - tm.assert_panel_equal(p3, expected) - - axes['minor_axis'] = MultiIndex.from_product( - [['X'], range(3)]) - p4 = Panel(0., **axes) - p4.iloc[0, 0, :] = [1, 2, 3] - expected = Panel(arr, **axes) - tm.assert_panel_equal(p4, expected) - - arr = np.array( - [[[1, 0, 0], [2, 0, 0]], [[0, 0, 0], [0, 0, 0]]], - dtype=np.float64) - p5 = Panel(0., **axes) - p5.iloc[0, :, 0] = [1, 2] - expected = Panel(arr, **axes) - tm.assert_panel_equal(p5, expected) +def test_iloc_getitem_panel_multiindex(): + + # GH 7199 + # Panel with multi-index + multi_index = MultiIndex.from_tuples([('ONE', 'one'), + ('TWO', 'two'), + ('THREE', 'three')], + names=['UPPER', 'lower']) + + simple_index = [x[0] for x in multi_index] + wd1 = Panel(items=['First', 'Second'], + major_axis=['a', 'b', 'c', 'd'], + minor_axis=multi_index) + + wd2 = Panel(items=['First', 'Second'], + major_axis=['a', 'b', 'c', 'd'], + minor_axis=simple_index) + + expected1 = wd1['First'].iloc[[True, True, True, False], [0, 2]] + result1 = wd1.iloc[0, [True, True, True, False], [0, 2]] # WRONG + tm.assert_frame_equal(result1, expected1) + + expected2 = wd2['First'].iloc[[True, True, True, False], [0, 2]] + result2 = wd2.iloc[0, [True, True, True, False], [0, 2]] + tm.assert_frame_equal(result2, expected2) + + expected1 = DataFrame(index=['a'], columns=multi_index, + dtype='float64') + result1 = wd1.iloc[0, [0], [0, 1, 2]] + tm.assert_frame_equal(result1, expected1) + + expected2 = DataFrame(index=['a'], columns=simple_index, + dtype='float64') + result2 = wd2.iloc[0, [0], [0, 1, 2]] + tm.assert_frame_equal(result2, expected2) + + # GH 7516 + mi = MultiIndex.from_tuples([(0, 'x'), (1, 'y'), (2, 'z')]) + p = Panel(np.arange(3 * 3 * 3, dtype='int64').reshape(3, 3, 3), + items=['a', 'b', 'c'], major_axis=mi, + minor_axis=['u', 'v', 'w']) + result = p.iloc[:, 1, 0] + expected = Series([3, 12, 21], index=['a', 'b', 'c'], name='u') + tm.assert_series_equal(result, expected) + + result = p.loc[:, (1, 'y'), 'u'] + tm.assert_series_equal(result, expected) + + +@pytest.mark.filterwarnings('ignore:\\nPanel:FutureWarning') +def test_panel_setitem_with_multiindex(): + + # 10360 + # failing with a multi-index + arr = np.array([[[1, 2, 3], [0, 0, 0]], + [[0, 0, 0], [0, 0, 0]]], + dtype=np.float64) + + # reg index + axes = dict(items=['A', 'B'], major_axis=[0, 1], + minor_axis=['X', 'Y', 'Z']) + p1 = Panel(0., **axes) + p1.iloc[0, 0, :] = [1, 2, 3] + expected = Panel(arr, **axes) + tm.assert_panel_equal(p1, expected) + + # multi-indexes + axes['items'] = MultiIndex.from_tuples( + [('A', 'a'), ('B', 'b')]) + p2 = Panel(0., **axes) + p2.iloc[0, 0, :] = [1, 2, 3] + expected = Panel(arr, **axes) + tm.assert_panel_equal(p2, expected) + + axes['major_axis'] = MultiIndex.from_tuples( + [('A', 1), ('A', 2)]) + p3 = Panel(0., **axes) + p3.iloc[0, 0, :] = [1, 2, 3] + expected = Panel(arr, **axes) + tm.assert_panel_equal(p3, expected) + + axes['minor_axis'] = MultiIndex.from_product( + [['X'], range(3)]) + p4 = Panel(0., **axes) + p4.iloc[0, 0, :] = [1, 2, 3] + expected = Panel(arr, **axes) + tm.assert_panel_equal(p4, expected) + + arr = np.array( + [[[1, 0, 0], [2, 0, 0]], [[0, 0, 0], [0, 0, 0]]], + dtype=np.float64) + p5 = Panel(0., **axes) + p5.iloc[0, :, 0] = [1, 2] + expected = Panel(arr, **axes) + tm.assert_panel_equal(p5, expected) diff --git a/pandas/tests/indexing/multiindex/test_partial.py b/pandas/tests/indexing/multiindex/test_partial.py index dc2bd4d36e9fb..926c346bb25ea 100644 --- a/pandas/tests/indexing/multiindex/test_partial.py +++ b/pandas/tests/indexing/multiindex/test_partial.py @@ -1,4 +1,4 @@ -from warnings import catch_warnings, simplefilter +# from warnings import catch_warnings, simplefilter import numpy as np import pytest @@ -7,177 +7,178 @@ from pandas.util import testing as tm -class TestMultiIndexPartial(object): - - def test_getitem_partial_int(self): - # GH 12416 - # with single item - l1 = [10, 20] - l2 = ['a', 'b'] - df = DataFrame(index=range(2), - columns=MultiIndex.from_product([l1, l2])) - expected = DataFrame(index=range(2), - columns=l2) - result = df[20] - tm.assert_frame_equal(result, expected) - - # with list - expected = DataFrame(index=range(2), - columns=MultiIndex.from_product([l1[1:], l2])) - result = df[[20]] - tm.assert_frame_equal(result, expected) - - # missing item: - with pytest.raises(KeyError, match='1'): - df[1] - with pytest.raises(KeyError, match=r"'\[1\] not in index'"): - df[[1]] - - def test_series_slice_partial(self): - pass - - def test_xs_partial(self, multiindex_dataframe_random_data, - multiindex_year_month_day_dataframe_random_data): - frame = multiindex_dataframe_random_data - ymd = multiindex_year_month_day_dataframe_random_data - result = frame.xs('foo') - result2 = frame.loc['foo'] - expected = frame.T['foo'].T - tm.assert_frame_equal(result, expected) - tm.assert_frame_equal(result, result2) - - result = ymd.xs((2000, 4)) - expected = ymd.loc[2000, 4] - tm.assert_frame_equal(result, expected) - - # ex from #1796 - index = MultiIndex(levels=[['foo', 'bar'], ['one', 'two'], [-1, 1]], - labels=[[0, 0, 0, 0, 1, 1, 1, 1], - [0, 0, 1, 1, 0, 0, 1, 1], [0, 1, 0, 1, 0, 1, - 0, 1]]) - df = DataFrame(np.random.randn(8, 4), index=index, - columns=list('abcd')) - - result = df.xs(['foo', 'one']) - expected = df.loc['foo', 'one'] - tm.assert_frame_equal(result, expected) - - def test_getitem_partial( - self, multiindex_year_month_day_dataframe_random_data): - ymd = multiindex_year_month_day_dataframe_random_data - ymd = ymd.T - result = ymd[2000, 2] - - expected = ymd.reindex(columns=ymd.columns[ymd.columns.labels[1] == 1]) - expected.columns = expected.columns.droplevel(0).droplevel(0) - tm.assert_frame_equal(result, expected) - - def test_fancy_slice_partial( - self, multiindex_dataframe_random_data, - multiindex_year_month_day_dataframe_random_data): - frame = multiindex_dataframe_random_data - result = frame.loc['bar':'baz'] - expected = frame[3:7] - tm.assert_frame_equal(result, expected) - - ymd = multiindex_year_month_day_dataframe_random_data - result = ymd.loc[(2000, 2):(2000, 4)] - lev = ymd.index.labels[1] - expected = ymd[(lev >= 1) & (lev <= 3)] - tm.assert_frame_equal(result, expected) - - def test_getitem_partial_column_select(self): - idx = MultiIndex(labels=[[0, 0, 0], [0, 1, 1], [1, 0, 1]], - levels=[['a', 'b'], ['x', 'y'], ['p', 'q']]) - df = DataFrame(np.random.rand(3, 2), index=idx) - - result = df.loc[('a', 'y'), :] - expected = df.loc[('a', 'y')] - tm.assert_frame_equal(result, expected) - - result = df.loc[('a', 'y'), [1, 0]] - expected = df.loc[('a', 'y')][[1, 0]] - tm.assert_frame_equal(result, expected) - - with catch_warnings(record=True): - simplefilter("ignore", DeprecationWarning) - result = df.ix[('a', 'y'), [1, 0]] - tm.assert_frame_equal(result, expected) - - pytest.raises(KeyError, df.loc.__getitem__, - (('a', 'foo'), slice(None, None))) - - def test_partial_set( - self, multiindex_year_month_day_dataframe_random_data): - # GH #397 - ymd = multiindex_year_month_day_dataframe_random_data - df = ymd.copy() - exp = ymd.copy() - df.loc[2000, 4] = 0 - exp.loc[2000, 4].values[:] = 0 - tm.assert_frame_equal(df, exp) - - df['A'].loc[2000, 4] = 1 - exp['A'].loc[2000, 4].values[:] = 1 - tm.assert_frame_equal(df, exp) - - df.loc[2000] = 5 - exp.loc[2000].values[:] = 5 - tm.assert_frame_equal(df, exp) - - # this works...for now - df['A'].iloc[14] = 5 - assert df['A'][14] == 5 - - # --------------------------------------------------------------------- - # AMBIGUOUS CASES! - - def test_partial_ix_missing( - self, multiindex_year_month_day_dataframe_random_data): - pytest.skip("skipping for now") - - ymd = multiindex_year_month_day_dataframe_random_data - result = ymd.loc[2000, 0] - expected = ymd.loc[2000]['A'] - tm.assert_series_equal(result, expected) - - # need to put in some work here - - # self.ymd.loc[2000, 0] = 0 - # assert (self.ymd.loc[2000]['A'] == 0).all() - - # Pretty sure the second (and maybe even the first) is already wrong. - pytest.raises(Exception, ymd.loc.__getitem__, (2000, 6)) - pytest.raises(Exception, ymd.loc.__getitem__, (2000, 6), 0) - - # --------------------------------------------------------------------- - - def test_setitem_multiple_partial(self, multiindex_dataframe_random_data): - frame = multiindex_dataframe_random_data - expected = frame.copy() - result = frame.copy() - result.loc[['foo', 'bar']] = 0 - expected.loc['foo'] = 0 - expected.loc['bar'] = 0 - tm.assert_frame_equal(result, expected) - - expected = frame.copy() - result = frame.copy() - result.loc['foo':'bar'] = 0 - expected.loc['foo'] = 0 - expected.loc['bar'] = 0 - tm.assert_frame_equal(result, expected) - - expected = frame['A'].copy() - result = frame['A'].copy() - result.loc[['foo', 'bar']] = 0 - expected.loc['foo'] = 0 - expected.loc['bar'] = 0 - tm.assert_series_equal(result, expected) - - expected = frame['A'].copy() - result = frame['A'].copy() - result.loc['foo':'bar'] = 0 - expected.loc['foo'] = 0 - expected.loc['bar'] = 0 - tm.assert_series_equal(result, expected) +def test_getitem_partial_int(): + # GH 12416 + # with single item + l1 = [10, 20] + l2 = ['a', 'b'] + df = DataFrame(index=range(2), + columns=MultiIndex.from_product([l1, l2])) + expected = DataFrame(index=range(2), + columns=l2) + result = df[20] + tm.assert_frame_equal(result, expected) + + # with list + expected = DataFrame(index=range(2), + columns=MultiIndex.from_product([l1[1:], l2])) + result = df[[20]] + tm.assert_frame_equal(result, expected) + + # missing item: + with pytest.raises(KeyError, match='1'): + df[1] + with pytest.raises(KeyError, match=r"'\[1\] not in index'"): + df[[1]] + + +def test_series_slice_partial(): + pass + + +def test_xs_partial(multiindex_dataframe_random_data, + multiindex_year_month_day_dataframe_random_data): + frame = multiindex_dataframe_random_data + ymd = multiindex_year_month_day_dataframe_random_data + result = frame.xs('foo') + result2 = frame.loc['foo'] + expected = frame.T['foo'].T + tm.assert_frame_equal(result, expected) + tm.assert_frame_equal(result, result2) + + result = ymd.xs((2000, 4)) + expected = ymd.loc[2000, 4] + tm.assert_frame_equal(result, expected) + + # ex from #1796 + index = MultiIndex(levels=[['foo', 'bar'], ['one', 'two'], [-1, 1]], + labels=[[0, 0, 0, 0, 1, 1, 1, 1], + [0, 0, 1, 1, 0, 0, 1, 1], [0, 1, 0, 1, 0, 1, + 0, 1]]) + df = DataFrame(np.random.randn(8, 4), index=index, + columns=list('abcd')) + + result = df.xs(['foo', 'one']) + expected = df.loc['foo', 'one'] + tm.assert_frame_equal(result, expected) + + +def test_getitem_partial(multiindex_year_month_day_dataframe_random_data): + ymd = multiindex_year_month_day_dataframe_random_data + ymd = ymd.T + result = ymd[2000, 2] + + expected = ymd.reindex(columns=ymd.columns[ymd.columns.labels[1] == 1]) + expected.columns = expected.columns.droplevel(0).droplevel(0) + tm.assert_frame_equal(result, expected) + + +def test_fancy_slice_partial(multiindex_dataframe_random_data, + multiindex_year_month_day_dataframe_random_data): + frame = multiindex_dataframe_random_data + result = frame.loc['bar':'baz'] + expected = frame[3:7] + tm.assert_frame_equal(result, expected) + + ymd = multiindex_year_month_day_dataframe_random_data + result = ymd.loc[(2000, 2):(2000, 4)] + lev = ymd.index.labels[1] + expected = ymd[(lev >= 1) & (lev <= 3)] + tm.assert_frame_equal(result, expected) + + +@pytest.mark.filterwarnings("ignore:\\n.ix:DeprecationWarning") +def test_getitem_partial_column_select(): + idx = MultiIndex(labels=[[0, 0, 0], [0, 1, 1], [1, 0, 1]], + levels=[['a', 'b'], ['x', 'y'], ['p', 'q']]) + df = DataFrame(np.random.rand(3, 2), index=idx) + + result = df.loc[('a', 'y'), :] + expected = df.loc[('a', 'y')] + tm.assert_frame_equal(result, expected) + + result = df.loc[('a', 'y'), [1, 0]] + expected = df.loc[('a', 'y')][[1, 0]] + tm.assert_frame_equal(result, expected) + + result = df.ix[('a', 'y'), [1, 0]] + tm.assert_frame_equal(result, expected) + + pytest.raises(KeyError, df.loc.__getitem__, + (('a', 'foo'), slice(None, None))) + + +def test_partial_set(multiindex_year_month_day_dataframe_random_data): + # GH #397 + ymd = multiindex_year_month_day_dataframe_random_data + df = ymd.copy() + exp = ymd.copy() + df.loc[2000, 4] = 0 + exp.loc[2000, 4].values[:] = 0 + tm.assert_frame_equal(df, exp) + + df['A'].loc[2000, 4] = 1 + exp['A'].loc[2000, 4].values[:] = 1 + tm.assert_frame_equal(df, exp) + + df.loc[2000] = 5 + exp.loc[2000].values[:] = 5 + tm.assert_frame_equal(df, exp) + + # this works...for now + df['A'].iloc[14] = 5 + assert df['A'][14] == 5 + +# --------------------------------------------------------------------- +# AMBIGUOUS CASES! + + +def test_partial_ix_missing(multiindex_year_month_day_dataframe_random_data): + pytest.skip("skipping for now") + + ymd = multiindex_year_month_day_dataframe_random_data + result = ymd.loc[2000, 0] + expected = ymd.loc[2000]['A'] + tm.assert_series_equal(result, expected) + + # need to put in some work here + + # self.ymd.loc[2000, 0] = 0 + # assert (self.ymd.loc[2000]['A'] == 0).all() + + # Pretty sure the second (and maybe even the first) is already wrong. + pytest.raises(Exception, ymd.loc.__getitem__, (2000, 6)) + pytest.raises(Exception, ymd.loc.__getitem__, (2000, 6), 0) + +# --------------------------------------------------------------------- + + +def test_setitem_multiple_partial(multiindex_dataframe_random_data): + frame = multiindex_dataframe_random_data + expected = frame.copy() + result = frame.copy() + result.loc[['foo', 'bar']] = 0 + expected.loc['foo'] = 0 + expected.loc['bar'] = 0 + tm.assert_frame_equal(result, expected) + + expected = frame.copy() + result = frame.copy() + result.loc['foo':'bar'] = 0 + expected.loc['foo'] = 0 + expected.loc['bar'] = 0 + tm.assert_frame_equal(result, expected) + + expected = frame['A'].copy() + result = frame['A'].copy() + result.loc[['foo', 'bar']] = 0 + expected.loc['foo'] = 0 + expected.loc['bar'] = 0 + tm.assert_series_equal(result, expected) + + expected = frame['A'].copy() + result = frame['A'].copy() + result.loc['foo':'bar'] = 0 + expected.loc['foo'] = 0 + expected.loc['bar'] = 0 + tm.assert_series_equal(result, expected) diff --git a/pandas/tests/indexing/multiindex/test_set_ops.py b/pandas/tests/indexing/multiindex/test_set_ops.py index 1f864de2dacb1..6bb1dd96869d7 100644 --- a/pandas/tests/indexing/multiindex/test_set_ops.py +++ b/pandas/tests/indexing/multiindex/test_set_ops.py @@ -4,39 +4,38 @@ from pandas.util import testing as tm -class TestMultiIndexSetOps(object): - - def test_multiindex_symmetric_difference(self): - # GH 13490 - idx = MultiIndex.from_product([['a', 'b'], ['A', 'B']], - names=['a', 'b']) - result = idx ^ idx - assert result.names == idx.names - - idx2 = idx.copy().rename(['A', 'B']) - result = idx ^ idx2 - assert result.names == [None, None] - - def test_mixed_depth_insert(self): - arrays = [['a', 'top', 'top', 'routine1', 'routine1', 'routine2'], - ['', 'OD', 'OD', 'result1', 'result2', 'result1'], - ['', 'wx', 'wy', '', '', '']] - - tuples = sorted(zip(*arrays)) - index = MultiIndex.from_tuples(tuples) - df = DataFrame(randn(4, 6), columns=index) - - result = df.copy() - expected = df.copy() - result['b'] = [1, 2, 3, 4] - expected['b', '', ''] = [1, 2, 3, 4] - tm.assert_frame_equal(result, expected) - - def test_dataframe_insert_column_all_na(self): - # GH #1534 - mix = MultiIndex.from_tuples([('1a', '2a'), ('1a', '2b'), ('1a', '2c') - ]) - df = DataFrame([[1, 2], [3, 4], [5, 6]], index=mix) - s = Series({(1, 1): 1, (1, 2): 2}) - df['new'] = s - assert df['new'].isna().all() +def test_multiindex_symmetric_difference(): + # GH 13490 + idx = MultiIndex.from_product([['a', 'b'], ['A', 'B']], + names=['a', 'b']) + result = idx ^ idx + assert result.names == idx.names + + idx2 = idx.copy().rename(['A', 'B']) + result = idx ^ idx2 + assert result.names == [None, None] + + +def test_mixed_depth_insert(): + arrays = [['a', 'top', 'top', 'routine1', 'routine1', 'routine2'], + ['', 'OD', 'OD', 'result1', 'result2', 'result1'], + ['', 'wx', 'wy', '', '', '']] + + tuples = sorted(zip(*arrays)) + index = MultiIndex.from_tuples(tuples) + df = DataFrame(randn(4, 6), columns=index) + + result = df.copy() + expected = df.copy() + result['b'] = [1, 2, 3, 4] + expected['b', '', ''] = [1, 2, 3, 4] + tm.assert_frame_equal(result, expected) + + +def test_dataframe_insert_column_all_na(): + # GH #1534 + mix = MultiIndex.from_tuples([('1a', '2a'), ('1a', '2b'), ('1a', '2c')]) + df = DataFrame([[1, 2], [3, 4], [5, 6]], index=mix) + s = Series({(1, 1): 1, (1, 2): 2}) + df['new'] = s + assert df['new'].isna().all() diff --git a/pandas/tests/indexing/multiindex/test_setitem.py b/pandas/tests/indexing/multiindex/test_setitem.py index 7288983f5f04b..645ae65797106 100644 --- a/pandas/tests/indexing/multiindex/test_setitem.py +++ b/pandas/tests/indexing/multiindex/test_setitem.py @@ -1,5 +1,3 @@ -from warnings import catch_warnings, simplefilter - import numpy as np from numpy.random import randn import pytest @@ -11,394 +9,391 @@ @pytest.mark.filterwarnings("ignore:\\n.ix:DeprecationWarning") -class TestMultiIndexSetItem(object): - - def test_setitem_multiindex(self): - with catch_warnings(record=True): - - for index_fn in ('ix', 'loc'): - - def assert_equal(a, b): - assert a == b - - def check(target, indexers, value, compare_fn, expected=None): - fn = getattr(target, index_fn) - fn.__setitem__(indexers, value) - result = fn.__getitem__(indexers) - if expected is None: - expected = value - compare_fn(result, expected) - # GH7190 - index = MultiIndex.from_product([np.arange(0, 100), - np.arange(0, 80)], - names=['time', 'firm']) - t, n = 0, 2 - df = DataFrame(np.nan, columns=['A', 'w', 'l', 'a', 'x', - 'X', 'd', 'profit'], - index=index) - check(target=df, indexers=((t, n), 'X'), value=0, - compare_fn=assert_equal) - - df = DataFrame(-999, columns=['A', 'w', 'l', 'a', 'x', - 'X', 'd', 'profit'], - index=index) - check(target=df, indexers=((t, n), 'X'), value=1, - compare_fn=assert_equal) - - df = DataFrame(columns=['A', 'w', 'l', 'a', 'x', +def test_setitem_multiindex(): + for index_fn in ('ix', 'loc'): + + def assert_equal(a, b): + assert a == b + + def check(target, indexers, value, compare_fn, expected=None): + fn = getattr(target, index_fn) + fn.__setitem__(indexers, value) + result = fn.__getitem__(indexers) + if expected is None: + expected = value + compare_fn(result, expected) + # GH7190 + index = MultiIndex.from_product([np.arange(0, 100), + np.arange(0, 80)], + names=['time', 'firm']) + t, n = 0, 2 + df = DataFrame(np.nan, columns=['A', 'w', 'l', 'a', 'x', 'X', 'd', 'profit'], - index=index) - check(target=df, indexers=((t, n), 'X'), value=2, - compare_fn=assert_equal) - - # gh-7218: assigning with 0-dim arrays - df = DataFrame(-999, columns=['A', 'w', 'l', 'a', 'x', - 'X', 'd', 'profit'], - index=index) - check(target=df, - indexers=((t, n), 'X'), - value=np.array(3), - compare_fn=assert_equal, - expected=3, ) - - # GH5206 - df = DataFrame(np.arange(25).reshape(5, 5), - columns='A,B,C,D,E'.split(','), dtype=float) - df['F'] = 99 - row_selection = df['A'] % 2 == 0 - col_selection = ['B', 'C'] - with catch_warnings(record=True): - df.ix[row_selection, col_selection] = df['F'] - output = DataFrame(99., index=[0, 2, 4], columns=['B', 'C']) - with catch_warnings(record=True): - tm.assert_frame_equal(df.ix[row_selection, col_selection], - output) - check(target=df, - indexers=(row_selection, col_selection), - value=df['F'], - compare_fn=tm.assert_frame_equal, - expected=output, ) - - # GH11372 - idx = MultiIndex.from_product([ - ['A', 'B', 'C'], - date_range('2015-01-01', '2015-04-01', freq='MS')]) - cols = MultiIndex.from_product([ - ['foo', 'bar'], - date_range('2016-01-01', '2016-02-01', freq='MS')]) - - df = DataFrame(np.random.random((12, 4)), - index=idx, columns=cols) - - subidx = MultiIndex.from_tuples( - [('A', Timestamp('2015-01-01')), - ('A', Timestamp('2015-02-01'))]) - subcols = MultiIndex.from_tuples( - [('foo', Timestamp('2016-01-01')), - ('foo', Timestamp('2016-02-01'))]) - - vals = DataFrame(np.random.random((2, 2)), - index=subidx, columns=subcols) - check(target=df, - indexers=(subidx, subcols), - value=vals, - compare_fn=tm.assert_frame_equal, ) - # set all columns - vals = DataFrame( - np.random.random((2, 4)), index=subidx, columns=cols) - check(target=df, - indexers=(subidx, slice(None, None, None)), - value=vals, - compare_fn=tm.assert_frame_equal, ) - # identity - copy = df.copy() - check(target=df, indexers=(df.index, df.columns), value=df, - compare_fn=tm.assert_frame_equal, expected=copy) - - def test_multiindex_setitem(self): - - # GH 3738 - # setting with a multi-index right hand side - arrays = [np.array(['bar', 'bar', 'baz', 'qux', 'qux', 'bar']), - np.array(['one', 'two', 'one', 'one', 'two', 'one']), - np.arange(0, 6, 1)] - - df_orig = DataFrame(np.random.randn(6, 3), index=arrays, - columns=['A', 'B', 'C']).sort_index() - - expected = df_orig.loc[['bar']] * 2 - df = df_orig.copy() - df.loc[['bar']] *= 2 - tm.assert_frame_equal(df.loc[['bar']], expected) - - # raise because these have differing levels - def f(): - df.loc['bar'] *= 2 - - pytest.raises(TypeError, f) - - # from SO - # http://stackoverflow.com/questions/24572040/pandas-access-the-level-of-multiindex-for-inplace-operation - df_orig = DataFrame.from_dict({'price': { - ('DE', 'Coal', 'Stock'): 2, - ('DE', 'Gas', 'Stock'): 4, - ('DE', 'Elec', 'Demand'): 1, - ('FR', 'Gas', 'Stock'): 5, - ('FR', 'Solar', 'SupIm'): 0, - ('FR', 'Wind', 'SupIm'): 0 - }}) - df_orig.index = MultiIndex.from_tuples(df_orig.index, - names=['Sit', 'Com', 'Type']) - - expected = df_orig.copy() - expected.iloc[[0, 2, 3]] *= 2 - - idx = pd.IndexSlice - df = df_orig.copy() - df.loc[idx[:, :, 'Stock'], :] *= 2 - tm.assert_frame_equal(df, expected) - - df = df_orig.copy() - df.loc[idx[:, :, 'Stock'], 'price'] *= 2 - tm.assert_frame_equal(df, expected) - - def test_multiindex_assignment(self): - - # GH3777 part 2 - - # mixed dtype - df = DataFrame(np.random.randint(5, 10, size=9).reshape(3, 3), - columns=list('abc'), - index=[[4, 4, 8], [8, 10, 12]]) - df['d'] = np.nan - arr = np.array([0., 1.]) - - with catch_warnings(record=True): - df.ix[4, 'd'] = arr - tm.assert_series_equal(df.ix[4, 'd'], - Series(arr, index=[8, 10], name='d')) - - # single dtype - df = DataFrame(np.random.randint(5, 10, size=9).reshape(3, 3), - columns=list('abc'), - index=[[4, 4, 8], [8, 10, 12]]) - - with catch_warnings(record=True): - df.ix[4, 'c'] = arr - exp = Series(arr, index=[8, 10], name='c', dtype='float64') - tm.assert_series_equal(df.ix[4, 'c'], exp) - - # scalar ok - with catch_warnings(record=True): - df.ix[4, 'c'] = 10 - exp = Series(10, index=[8, 10], name='c', dtype='float64') - tm.assert_series_equal(df.ix[4, 'c'], exp) - - # invalid assignments - def f(): - with catch_warnings(record=True): - df.ix[4, 'c'] = [0, 1, 2, 3] - - pytest.raises(ValueError, f) - - def f(): - with catch_warnings(record=True): - df.ix[4, 'c'] = [0] - - pytest.raises(ValueError, f) - - # groupby example - NUM_ROWS = 100 - NUM_COLS = 10 - col_names = ['A' + num for num in - map(str, np.arange(NUM_COLS).tolist())] - index_cols = col_names[:5] - - df = DataFrame(np.random.randint(5, size=(NUM_ROWS, NUM_COLS)), - dtype=np.int64, columns=col_names) - df = df.set_index(index_cols).sort_index() - grp = df.groupby(level=index_cols[:4]) - df['new_col'] = np.nan - - f_index = np.arange(5) - - def f(name, df2): - return Series(np.arange(df2.shape[0]), - name=df2.index.values[0]).reindex(f_index) - - # TODO(wesm): unused? - # new_df = pd.concat([f(name, df2) for name, df2 in grp], axis=1).T - - # we are actually operating on a copy here - # but in this case, that's ok - for name, df2 in grp: - new_vals = np.arange(df2.shape[0]) - with catch_warnings(record=True): - df.ix[name, 'new_col'] = new_vals - - def test_series_setitem( - self, multiindex_year_month_day_dataframe_random_data): - ymd = multiindex_year_month_day_dataframe_random_data - s = ymd['A'] - - s[2000, 3] = np.nan - assert isna(s.values[42:65]).all() - assert notna(s.values[:42]).all() - assert notna(s.values[65:]).all() - - s[2000, 3, 10] = np.nan - assert isna(s[49]) - - def test_frame_getitem_setitem_boolean( - self, multiindex_dataframe_random_data): - frame = multiindex_dataframe_random_data - df = frame.T.copy() - values = df.values - - result = df[df > 0] - expected = df.where(df > 0) - tm.assert_frame_equal(result, expected) - - df[df > 0] = 5 - values[values > 0] = 5 - tm.assert_almost_equal(df.values, values) - - df[df == 5] = 0 - values[values == 5] = 0 - tm.assert_almost_equal(df.values, values) - - # a df that needs alignment first - df[df[:-1] < 0] = 2 - np.putmask(values[:-1], values[:-1] < 0, 2) - tm.assert_almost_equal(df.values, values) - - with pytest.raises(TypeError, match='boolean values only'): - df[df * 0] = 2 - - def test_frame_getitem_setitem_multislice(self): - levels = [['t1', 't2'], ['a', 'b', 'c']] - labels = [[0, 0, 0, 1, 1], [0, 1, 2, 0, 1]] - midx = MultiIndex(labels=labels, levels=levels, names=[None, 'id']) - df = DataFrame({'value': [1, 2, 3, 7, 8]}, index=midx) - - result = df.loc[:, 'value'] - tm.assert_series_equal(df['value'], result) - - with catch_warnings(record=True): - simplefilter("ignore", DeprecationWarning) - result = df.ix[:, 'value'] - tm.assert_series_equal(df['value'], result) - - result = df.loc[df.index[1:3], 'value'] - tm.assert_series_equal(df['value'][1:3], result) - - result = df.loc[:, :] - tm.assert_frame_equal(df, result) - - result = df - df.loc[:, 'value'] = 10 - result['value'] = 10 - tm.assert_frame_equal(df, result) - - df.loc[:, :] = 10 - tm.assert_frame_equal(df, result) - - def test_frame_setitem_multi_column(self): - df = DataFrame(randn(10, 4), columns=[['a', 'a', 'b', 'b'], - [0, 1, 0, 1]]) - - cp = df.copy() - cp['a'] = cp['b'] - tm.assert_frame_equal(cp['a'], cp['b']) - - # set with ndarray - cp = df.copy() - cp['a'] = cp['b'].values - tm.assert_frame_equal(cp['a'], cp['b']) - - # --------------------------------------- - # #1803 - columns = MultiIndex.from_tuples([('A', '1'), ('A', '2'), ('B', '1')]) - df = DataFrame(index=[1, 3, 5], columns=columns) - - # Works, but adds a column instead of updating the two existing ones - df['A'] = 0.0 # Doesn't work - assert (df['A'].values == 0).all() - - # it broadcasts - df['B', '1'] = [1, 2, 3] - df['A'] = df['B', '1'] - - sliced_a1 = df['A', '1'] - sliced_a2 = df['A', '2'] - sliced_b1 = df['B', '1'] - tm.assert_series_equal(sliced_a1, sliced_b1, check_names=False) - tm.assert_series_equal(sliced_a2, sliced_b1, check_names=False) - assert sliced_a1.name == ('A', '1') - assert sliced_a2.name == ('A', '2') - assert sliced_b1.name == ('B', '1') - - def test_getitem_setitem_tuple_plus_columns( - self, multiindex_year_month_day_dataframe_random_data): - # GH #1013 - ymd = multiindex_year_month_day_dataframe_random_data - df = ymd[:5] - - result = df.loc[(2000, 1, 6), ['A', 'B', 'C']] - expected = df.loc[2000, 1, 6][['A', 'B', 'C']] - tm.assert_series_equal(result, expected) - - def test_getitem_setitem_slice_integers(self): - index = MultiIndex(levels=[[0, 1, 2], [0, 2]], - labels=[[0, 0, 1, 1, 2, 2], [0, 1, 0, 1, 0, 1]]) - - frame = DataFrame(np.random.randn(len(index), 4), index=index, - columns=['a', 'b', 'c', 'd']) - res = frame.loc[1:2] - exp = frame.reindex(frame.index[2:]) - tm.assert_frame_equal(res, exp) - - frame.loc[1:2] = 7 - assert (frame.loc[1:2] == 7).values.all() - - series = Series(np.random.randn(len(index)), index=index) - - res = series.loc[1:2] - exp = series.reindex(series.index[2:]) - tm.assert_series_equal(res, exp) - - series.loc[1:2] = 7 - assert (series.loc[1:2] == 7).values.all() - - def test_setitem_change_dtype(self, multiindex_dataframe_random_data): - frame = multiindex_dataframe_random_data - dft = frame.T - s = dft['foo', 'two'] - dft['foo', 'two'] = s > s.median() - tm.assert_series_equal(dft['foo', 'two'], s > s.median()) - # assert isinstance(dft._data.blocks[1].items, MultiIndex) - - reindexed = dft.reindex(columns=[('foo', 'two')]) - tm.assert_series_equal(reindexed['foo', 'two'], s > s.median()) + index=index) + check(target=df, indexers=((t, n), 'X'), value=0, + compare_fn=assert_equal) + + df = DataFrame(-999, columns=['A', 'w', 'l', 'a', 'x', + 'X', 'd', 'profit'], + index=index) + check(target=df, indexers=((t, n), 'X'), value=1, + compare_fn=assert_equal) + + df = DataFrame(columns=['A', 'w', 'l', 'a', 'x', + 'X', 'd', 'profit'], + index=index) + check(target=df, indexers=((t, n), 'X'), value=2, + compare_fn=assert_equal) + + # gh-7218: assigning with 0-dim arrays + df = DataFrame(-999, columns=['A', 'w', 'l', 'a', 'x', + 'X', 'd', 'profit'], + index=index) + check(target=df, + indexers=((t, n), 'X'), + value=np.array(3), + compare_fn=assert_equal, + expected=3, ) + + # GH5206 + df = DataFrame(np.arange(25).reshape(5, 5), + columns='A,B,C,D,E'.split(','), dtype=float) + df['F'] = 99 + row_selection = df['A'] % 2 == 0 + col_selection = ['B', 'C'] + df.ix[row_selection, col_selection] = df['F'] + output = DataFrame(99., index=[0, 2, 4], columns=['B', 'C']) + tm.assert_frame_equal(df.ix[row_selection, col_selection], + output) + check(target=df, + indexers=(row_selection, col_selection), + value=df['F'], + compare_fn=tm.assert_frame_equal, + expected=output, ) + + # GH11372 + idx = MultiIndex.from_product([ + ['A', 'B', 'C'], + date_range('2015-01-01', '2015-04-01', freq='MS')]) + cols = MultiIndex.from_product([ + ['foo', 'bar'], + date_range('2016-01-01', '2016-02-01', freq='MS')]) + + df = DataFrame(np.random.random((12, 4)), + index=idx, columns=cols) + + subidx = MultiIndex.from_tuples( + [('A', Timestamp('2015-01-01')), + ('A', Timestamp('2015-02-01'))]) + subcols = MultiIndex.from_tuples( + [('foo', Timestamp('2016-01-01')), + ('foo', Timestamp('2016-02-01'))]) + + vals = DataFrame(np.random.random((2, 2)), + index=subidx, columns=subcols) + check(target=df, + indexers=(subidx, subcols), + value=vals, + compare_fn=tm.assert_frame_equal, ) + # set all columns + vals = DataFrame( + np.random.random((2, 4)), index=subidx, columns=cols) + check(target=df, + indexers=(subidx, slice(None, None, None)), + value=vals, + compare_fn=tm.assert_frame_equal, ) + # identity + copy = df.copy() + check(target=df, indexers=(df.index, df.columns), value=df, + compare_fn=tm.assert_frame_equal, expected=copy) + + +def test_multiindex_setitem(): + + # GH 3738 + # setting with a multi-index right hand side + arrays = [np.array(['bar', 'bar', 'baz', 'qux', 'qux', 'bar']), + np.array(['one', 'two', 'one', 'one', 'two', 'one']), + np.arange(0, 6, 1)] + + df_orig = DataFrame(np.random.randn(6, 3), index=arrays, + columns=['A', 'B', 'C']).sort_index() + + expected = df_orig.loc[['bar']] * 2 + df = df_orig.copy() + df.loc[['bar']] *= 2 + tm.assert_frame_equal(df.loc[['bar']], expected) + + # raise because these have differing levels + def f(): + df.loc['bar'] *= 2 + + pytest.raises(TypeError, f) + + # from SO + # http://stackoverflow.com/questions/24572040/pandas-access-the-level-of-multiindex-for-inplace-operation + df_orig = DataFrame.from_dict({'price': { + ('DE', 'Coal', 'Stock'): 2, + ('DE', 'Gas', 'Stock'): 4, + ('DE', 'Elec', 'Demand'): 1, + ('FR', 'Gas', 'Stock'): 5, + ('FR', 'Solar', 'SupIm'): 0, + ('FR', 'Wind', 'SupIm'): 0 + }}) + df_orig.index = MultiIndex.from_tuples(df_orig.index, + names=['Sit', 'Com', 'Type']) + + expected = df_orig.copy() + expected.iloc[[0, 2, 3]] *= 2 + + idx = pd.IndexSlice + df = df_orig.copy() + df.loc[idx[:, :, 'Stock'], :] *= 2 + tm.assert_frame_equal(df, expected) + + df = df_orig.copy() + df.loc[idx[:, :, 'Stock'], 'price'] *= 2 + tm.assert_frame_equal(df, expected) + + +@pytest.mark.filterwarnings("ignore:\\n.ix:DeprecationWarning") +def test_multiindex_assignment(): + + # GH3777 part 2 + + # mixed dtype + df = DataFrame(np.random.randint(5, 10, size=9).reshape(3, 3), + columns=list('abc'), + index=[[4, 4, 8], [8, 10, 12]]) + df['d'] = np.nan + arr = np.array([0., 1.]) + + df.ix[4, 'd'] = arr + tm.assert_series_equal(df.ix[4, 'd'], + Series(arr, index=[8, 10], name='d')) + + # single dtype + df = DataFrame(np.random.randint(5, 10, size=9).reshape(3, 3), + columns=list('abc'), + index=[[4, 4, 8], [8, 10, 12]]) + + df.ix[4, 'c'] = arr + exp = Series(arr, index=[8, 10], name='c', dtype='float64') + tm.assert_series_equal(df.ix[4, 'c'], exp) + + # scalar ok + df.ix[4, 'c'] = 10 + exp = Series(10, index=[8, 10], name='c', dtype='float64') + tm.assert_series_equal(df.ix[4, 'c'], exp) + + # invalid assignments + def f(): + df.ix[4, 'c'] = [0, 1, 2, 3] + + pytest.raises(ValueError, f) + + def f(): + df.ix[4, 'c'] = [0] + + pytest.raises(ValueError, f) + + # groupby example + NUM_ROWS = 100 + NUM_COLS = 10 + col_names = ['A' + num for num in + map(str, np.arange(NUM_COLS).tolist())] + index_cols = col_names[:5] + + df = DataFrame(np.random.randint(5, size=(NUM_ROWS, NUM_COLS)), + dtype=np.int64, columns=col_names) + df = df.set_index(index_cols).sort_index() + grp = df.groupby(level=index_cols[:4]) + df['new_col'] = np.nan + + f_index = np.arange(5) + + def f(name, df2): + return Series(np.arange(df2.shape[0]), + name=df2.index.values[0]).reindex(f_index) + + # TODO(wesm): unused? + # new_df = pd.concat([f(name, df2) for name, df2 in grp], axis=1).T + + # we are actually operating on a copy here + # but in this case, that's ok + for name, df2 in grp: + new_vals = np.arange(df2.shape[0]) + df.ix[name, 'new_col'] = new_vals + + +def test_series_setitem(multiindex_year_month_day_dataframe_random_data): + ymd = multiindex_year_month_day_dataframe_random_data + s = ymd['A'] + + s[2000, 3] = np.nan + assert isna(s.values[42:65]).all() + assert notna(s.values[:42]).all() + assert notna(s.values[65:]).all() + + s[2000, 3, 10] = np.nan + assert isna(s[49]) + + +def test_frame_getitem_setitem_boolean(multiindex_dataframe_random_data): + frame = multiindex_dataframe_random_data + df = frame.T.copy() + values = df.values + + result = df[df > 0] + expected = df.where(df > 0) + tm.assert_frame_equal(result, expected) + + df[df > 0] = 5 + values[values > 0] = 5 + tm.assert_almost_equal(df.values, values) + + df[df == 5] = 0 + values[values == 5] = 0 + tm.assert_almost_equal(df.values, values) + + # a df that needs alignment first + df[df[:-1] < 0] = 2 + np.putmask(values[:-1], values[:-1] < 0, 2) + tm.assert_almost_equal(df.values, values) + + with pytest.raises(TypeError, match='boolean values only'): + df[df * 0] = 2 + + +@pytest.mark.filterwarnings("ignore:\\n.ix:DeprecationWarning") +def test_frame_getitem_setitem_multislice(): + levels = [['t1', 't2'], ['a', 'b', 'c']] + labels = [[0, 0, 0, 1, 1], [0, 1, 2, 0, 1]] + midx = MultiIndex(labels=labels, levels=levels, names=[None, 'id']) + df = DataFrame({'value': [1, 2, 3, 7, 8]}, index=midx) + + result = df.loc[:, 'value'] + tm.assert_series_equal(df['value'], result) + + result = df.ix[:, 'value'] + tm.assert_series_equal(df['value'], result) + + result = df.loc[df.index[1:3], 'value'] + tm.assert_series_equal(df['value'][1:3], result) + + result = df.loc[:, :] + tm.assert_frame_equal(df, result) + + result = df + df.loc[:, 'value'] = 10 + result['value'] = 10 + tm.assert_frame_equal(df, result) + + df.loc[:, :] = 10 + tm.assert_frame_equal(df, result) + + +def test_frame_setitem_multi_column(): + df = DataFrame(randn(10, 4), columns=[['a', 'a', 'b', 'b'], + [0, 1, 0, 1]]) + + cp = df.copy() + cp['a'] = cp['b'] + tm.assert_frame_equal(cp['a'], cp['b']) + + # set with ndarray + cp = df.copy() + cp['a'] = cp['b'].values + tm.assert_frame_equal(cp['a'], cp['b']) + + # --------------------------------------- + # #1803 + columns = MultiIndex.from_tuples([('A', '1'), ('A', '2'), ('B', '1')]) + df = DataFrame(index=[1, 3, 5], columns=columns) + + # Works, but adds a column instead of updating the two existing ones + df['A'] = 0.0 # Doesn't work + assert (df['A'].values == 0).all() + + # it broadcasts + df['B', '1'] = [1, 2, 3] + df['A'] = df['B', '1'] + + sliced_a1 = df['A', '1'] + sliced_a2 = df['A', '2'] + sliced_b1 = df['B', '1'] + tm.assert_series_equal(sliced_a1, sliced_b1, check_names=False) + tm.assert_series_equal(sliced_a2, sliced_b1, check_names=False) + assert sliced_a1.name == ('A', '1') + assert sliced_a2.name == ('A', '2') + assert sliced_b1.name == ('B', '1') + + +def test_getitem_setitem_tuple_plus_columns( + multiindex_year_month_day_dataframe_random_data): + # GH #1013 + ymd = multiindex_year_month_day_dataframe_random_data + df = ymd[:5] + + result = df.loc[(2000, 1, 6), ['A', 'B', 'C']] + expected = df.loc[2000, 1, 6][['A', 'B', 'C']] + tm.assert_series_equal(result, expected) + + +def test_getitem_setitem_slice_integers(): + index = MultiIndex(levels=[[0, 1, 2], [0, 2]], + labels=[[0, 0, 1, 1, 2, 2], [0, 1, 0, 1, 0, 1]]) + + frame = DataFrame(np.random.randn(len(index), 4), index=index, + columns=['a', 'b', 'c', 'd']) + res = frame.loc[1:2] + exp = frame.reindex(frame.index[2:]) + tm.assert_frame_equal(res, exp) + + frame.loc[1:2] = 7 + assert (frame.loc[1:2] == 7).values.all() + + series = Series(np.random.randn(len(index)), index=index) + + res = series.loc[1:2] + exp = series.reindex(series.index[2:]) + tm.assert_series_equal(res, exp) + + series.loc[1:2] = 7 + assert (series.loc[1:2] == 7).values.all() + + +def test_setitem_change_dtype(multiindex_dataframe_random_data): + frame = multiindex_dataframe_random_data + dft = frame.T + s = dft['foo', 'two'] + dft['foo', 'two'] = s > s.median() + tm.assert_series_equal(dft['foo', 'two'], s > s.median()) + # assert isinstance(dft._data.blocks[1].items, MultiIndex) + + reindexed = dft.reindex(columns=[('foo', 'two')]) + tm.assert_series_equal(reindexed['foo', 'two'], s > s.median()) + + +def test_set_column_scalar_with_ix(multiindex_dataframe_random_data): + frame = multiindex_dataframe_random_data + subset = frame.index[[1, 4, 5]] + + frame.loc[subset] = 99 + assert (frame.loc[subset].values == 99).all() + + col = frame['B'] + col[subset] = 97 + assert (frame.loc[subset, 'B'] == 97).all() + + +def test_nonunique_assignment_1750(): + df = DataFrame([[1, 1, "x", "X"], [1, 1, "y", "Y"], [1, 2, "z", "Z"]], + columns=list("ABCD")) - def test_set_column_scalar_with_ix(self, multiindex_dataframe_random_data): - frame = multiindex_dataframe_random_data - subset = frame.index[[1, 4, 5]] - - frame.loc[subset] = 99 - assert (frame.loc[subset].values == 99).all() + df = df.set_index(['A', 'B']) + ix = MultiIndex.from_tuples([(1, 1)]) - col = frame['B'] - col[subset] = 97 - assert (frame.loc[subset, 'B'] == 97).all() + df.loc[ix, "C"] = '_' - def test_nonunique_assignment_1750(self): - df = DataFrame([[1, 1, "x", "X"], [1, 1, "y", "Y"], [1, 2, "z", "Z"]], - columns=list("ABCD")) - - df = df.set_index(['A', 'B']) - ix = MultiIndex.from_tuples([(1, 1)]) - - df.loc[ix, "C"] = '_' - - assert (df.xs((1, 1))['C'] == '_').all() + assert (df.xs((1, 1))['C'] == '_').all() diff --git a/pandas/tests/indexing/multiindex/test_slice.py b/pandas/tests/indexing/multiindex/test_slice.py index 10f1b22b49dce..fd1d708544a55 100644 --- a/pandas/tests/indexing/multiindex/test_slice.py +++ b/pandas/tests/indexing/multiindex/test_slice.py @@ -1,5 +1,3 @@ -from warnings import catch_warnings - import numpy as np import pytest @@ -11,562 +9,567 @@ from pandas.util import testing as tm -@pytest.mark.filterwarnings("ignore:\\n.ix:DeprecationWarning") -class TestMultiIndexSlicers(object): - - def test_per_axis_per_level_getitem(self): - - # GH6134 - # example test case - ix = MultiIndex.from_product([_mklbl('A', 5), _mklbl('B', 7), _mklbl( - 'C', 4), _mklbl('D', 2)]) - df = DataFrame(np.arange(len(ix.get_values())), index=ix) - - result = df.loc[(slice('A1', 'A3'), slice(None), ['C1', 'C3']), :] - expected = df.loc[[tuple([a, b, c, d]) - for a, b, c, d in df.index.values - if (a == 'A1' or a == 'A2' or a == 'A3') and ( - c == 'C1' or c == 'C3')]] - tm.assert_frame_equal(result, expected) - - expected = df.loc[[tuple([a, b, c, d]) - for a, b, c, d in df.index.values - if (a == 'A1' or a == 'A2' or a == 'A3') and ( - c == 'C1' or c == 'C2' or c == 'C3')]] - result = df.loc[(slice('A1', 'A3'), slice(None), slice('C1', 'C3')), :] - tm.assert_frame_equal(result, expected) - - # test multi-index slicing with per axis and per index controls - index = MultiIndex.from_tuples([('A', 1), ('A', 2), - ('A', 3), ('B', 1)], - names=['one', 'two']) - columns = MultiIndex.from_tuples([('a', 'foo'), ('a', 'bar'), - ('b', 'foo'), ('b', 'bah')], - names=['lvl0', 'lvl1']) - - df = DataFrame( - np.arange(16, dtype='int64').reshape( - 4, 4), index=index, columns=columns) - df = df.sort_index(axis=0).sort_index(axis=1) - - # identity - result = df.loc[(slice(None), slice(None)), :] - tm.assert_frame_equal(result, df) - result = df.loc[(slice(None), slice(None)), (slice(None), slice(None))] - tm.assert_frame_equal(result, df) - result = df.loc[:, (slice(None), slice(None))] - tm.assert_frame_equal(result, df) - - # index - result = df.loc[(slice(None), [1]), :] - expected = df.iloc[[0, 3]] - tm.assert_frame_equal(result, expected) - - result = df.loc[(slice(None), 1), :] - expected = df.iloc[[0, 3]] - tm.assert_frame_equal(result, expected) - - # columns - result = df.loc[:, (slice(None), ['foo'])] - expected = df.iloc[:, [1, 3]] - tm.assert_frame_equal(result, expected) - - # both - result = df.loc[(slice(None), 1), (slice(None), ['foo'])] - expected = df.iloc[[0, 3], [1, 3]] - tm.assert_frame_equal(result, expected) - - result = df.loc['A', 'a'] - expected = DataFrame(dict(bar=[1, 5, 9], foo=[0, 4, 8]), - index=Index([1, 2, 3], name='two'), - columns=Index(['bar', 'foo'], name='lvl1')) - tm.assert_frame_equal(result, expected) - - result = df.loc[(slice(None), [1, 2]), :] - expected = df.iloc[[0, 1, 3]] - tm.assert_frame_equal(result, expected) - - # multi-level series - s = Series(np.arange(len(ix.get_values())), index=ix) - result = s.loc['A1':'A3', :, ['C1', 'C3']] - expected = s.loc[[tuple([a, b, c, d]) - for a, b, c, d in s.index.values - if (a == 'A1' or a == 'A2' or a == 'A3') and ( - c == 'C1' or c == 'C3')]] - tm.assert_series_equal(result, expected) - - # boolean indexers - result = df.loc[(slice(None), df.loc[:, ('a', 'bar')] > 5), :] - expected = df.iloc[[2, 3]] - tm.assert_frame_equal(result, expected) - - def f(): - df.loc[(slice(None), np.array([True, False])), :] - - pytest.raises(ValueError, f) - - # ambiguous cases - # these can be multiply interpreted (e.g. in this case - # as df.loc[slice(None),[1]] as well - pytest.raises(KeyError, lambda: df.loc[slice(None), [1]]) - - result = df.loc[(slice(None), [1]), :] - expected = df.iloc[[0, 3]] - tm.assert_frame_equal(result, expected) - - # not lexsorted - assert df.index.lexsort_depth == 2 - df = df.sort_index(level=1, axis=0) - assert df.index.lexsort_depth == 0 - - msg = ('MultiIndex slicing requires the index to be ' - r'lexsorted: slicing on levels \[1\], lexsort depth 0') - with pytest.raises(UnsortedIndexError, match=msg): - df.loc[(slice(None), slice('bar')), :] - - # GH 16734: not sorted, but no real slicing - result = df.loc[(slice(None), df.loc[:, ('a', 'bar')] > 5), :] - tm.assert_frame_equal(result, df.iloc[[1, 3], :]) - - def test_multiindex_slicers_non_unique(self): - - # GH 7106 - # non-unique mi index support - df = (DataFrame(dict(A=['foo', 'foo', 'foo', 'foo'], - B=['a', 'a', 'a', 'a'], - C=[1, 2, 1, 3], - D=[1, 2, 3, 4])) - .set_index(['A', 'B', 'C']).sort_index()) - assert not df.index.is_unique - expected = (DataFrame(dict(A=['foo', 'foo'], B=['a', 'a'], - C=[1, 1], D=[1, 3])) - .set_index(['A', 'B', 'C']).sort_index()) - result = df.loc[(slice(None), slice(None), 1), :] - tm.assert_frame_equal(result, expected) - - # this is equivalent of an xs expression - result = df.xs(1, level=2, drop_level=False) - tm.assert_frame_equal(result, expected) - - df = (DataFrame(dict(A=['foo', 'foo', 'foo', 'foo'], - B=['a', 'a', 'a', 'a'], - C=[1, 2, 1, 2], - D=[1, 2, 3, 4])) - .set_index(['A', 'B', 'C']).sort_index()) - assert not df.index.is_unique - expected = (DataFrame(dict(A=['foo', 'foo'], B=['a', 'a'], - C=[1, 1], D=[1, 3])) - .set_index(['A', 'B', 'C']).sort_index()) - result = df.loc[(slice(None), slice(None), 1), :] - assert not result.index.is_unique - tm.assert_frame_equal(result, expected) - - # GH12896 - # numpy-implementation dependent bug - ints = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 12, 13, 14, 14, 16, - 17, 18, 19, 200000, 200000] - n = len(ints) - idx = MultiIndex.from_arrays([['a'] * n, ints]) - result = Series([1] * n, index=idx) - result = result.sort_index() - result = result.loc[(slice(None), slice(100000))] - expected = Series([1] * (n - 2), index=idx[:-2]).sort_index() - tm.assert_series_equal(result, expected) - - def test_multiindex_slicers_datetimelike(self): - - # GH 7429 - # buggy/inconsistent behavior when slicing with datetime-like - import datetime - dates = [datetime.datetime(2012, 1, 1, 12, 12, 12) + - datetime.timedelta(days=i) for i in range(6)] - freq = [1, 2] - index = MultiIndex.from_product( - [dates, freq], names=['date', 'frequency']) - - df = DataFrame( - np.arange(6 * 2 * 4, dtype='int64').reshape( - -1, 4), index=index, columns=list('ABCD')) - - # multi-axis slicing - idx = pd.IndexSlice - expected = df.iloc[[0, 2, 4], [0, 1]] - result = df.loc[(slice(Timestamp('2012-01-01 12:12:12'), - Timestamp('2012-01-03 12:12:12')), - slice(1, 1)), slice('A', 'B')] - tm.assert_frame_equal(result, expected) - - result = df.loc[(idx[Timestamp('2012-01-01 12:12:12'):Timestamp( - '2012-01-03 12:12:12')], idx[1:1]), slice('A', 'B')] - tm.assert_frame_equal(result, expected) - - result = df.loc[(slice(Timestamp('2012-01-01 12:12:12'), - Timestamp('2012-01-03 12:12:12')), 1), - slice('A', 'B')] - tm.assert_frame_equal(result, expected) - - # with strings - result = df.loc[(slice('2012-01-01 12:12:12', '2012-01-03 12:12:12'), - slice(1, 1)), slice('A', 'B')] - tm.assert_frame_equal(result, expected) - - result = df.loc[(idx['2012-01-01 12:12:12':'2012-01-03 12:12:12'], 1), - idx['A', 'B']] - tm.assert_frame_equal(result, expected) - - def test_multiindex_slicers_edges(self): - # GH 8132 - # various edge cases - df = DataFrame( - {'A': ['A0'] * 5 + ['A1'] * 5 + ['A2'] * 5, - 'B': ['B0', 'B0', 'B1', 'B1', 'B2'] * 3, - 'DATE': ["2013-06-11", "2013-07-02", "2013-07-09", "2013-07-30", - "2013-08-06", "2013-06-11", "2013-07-02", "2013-07-09", - "2013-07-30", "2013-08-06", "2013-09-03", "2013-10-01", - "2013-07-09", "2013-08-06", "2013-09-03"], - 'VALUES': [22, 35, 14, 9, 4, 40, 18, 4, 2, 5, 1, 2, 3, 4, 2]}) - - df['DATE'] = pd.to_datetime(df['DATE']) - df1 = df.set_index(['A', 'B', 'DATE']) - df1 = df1.sort_index() - - # A1 - Get all values under "A0" and "A1" - result = df1.loc[(slice('A1')), :] - expected = df1.iloc[0:10] - tm.assert_frame_equal(result, expected) - - # A2 - Get all values from the start to "A2" - result = df1.loc[(slice('A2')), :] - expected = df1 - tm.assert_frame_equal(result, expected) - - # A3 - Get all values under "B1" or "B2" - result = df1.loc[(slice(None), slice('B1', 'B2')), :] - expected = df1.iloc[[2, 3, 4, 7, 8, 9, 12, 13, 14]] - tm.assert_frame_equal(result, expected) - - # A4 - Get all values between 2013-07-02 and 2013-07-09 - result = df1.loc[(slice(None), slice(None), - slice('20130702', '20130709')), :] - expected = df1.iloc[[1, 2, 6, 7, 12]] - tm.assert_frame_equal(result, expected) - - # B1 - Get all values in B0 that are also under A0, A1 and A2 - result = df1.loc[(slice('A2'), slice('B0')), :] - expected = df1.iloc[[0, 1, 5, 6, 10, 11]] - tm.assert_frame_equal(result, expected) - - # B2 - Get all values in B0, B1 and B2 (similar to what #2 is doing for - # the As) - result = df1.loc[(slice(None), slice('B2')), :] - expected = df1 - tm.assert_frame_equal(result, expected) - - # B3 - Get all values from B1 to B2 and up to 2013-08-06 - result = df1.loc[(slice(None), slice('B1', 'B2'), - slice('2013-08-06')), :] - expected = df1.iloc[[2, 3, 4, 7, 8, 9, 12, 13]] - tm.assert_frame_equal(result, expected) - - # B4 - Same as A4 but the start of the date slice is not a key. - # shows indexing on a partial selection slice - result = df1.loc[(slice(None), slice(None), - slice('20130701', '20130709')), :] - expected = df1.iloc[[1, 2, 6, 7, 12]] - tm.assert_frame_equal(result, expected) - - def test_per_axis_per_level_doc_examples(self): - - # test index maker - idx = pd.IndexSlice - - # from indexing.rst / advanced - index = MultiIndex.from_product([_mklbl('A', 4), _mklbl('B', 2), - _mklbl('C', 4), _mklbl('D', 2)]) - columns = MultiIndex.from_tuples([('a', 'foo'), ('a', 'bar'), - ('b', 'foo'), ('b', 'bah')], - names=['lvl0', 'lvl1']) - df = DataFrame(np.arange(len(index) * len(columns), dtype='int64') - .reshape((len(index), len(columns))), - index=index, columns=columns) - result = df.loc[(slice('A1', 'A3'), slice(None), ['C1', 'C3']), :] - expected = df.loc[[tuple([a, b, c, d]) - for a, b, c, d in df.index.values - if (a == 'A1' or a == 'A2' or a == 'A3') and ( - c == 'C1' or c == 'C3')]] - tm.assert_frame_equal(result, expected) - result = df.loc[idx['A1':'A3', :, ['C1', 'C3']], :] - tm.assert_frame_equal(result, expected) - - result = df.loc[(slice(None), slice(None), ['C1', 'C3']), :] - expected = df.loc[[tuple([a, b, c, d]) - for a, b, c, d in df.index.values - if (c == 'C1' or c == 'C3')]] - tm.assert_frame_equal(result, expected) - result = df.loc[idx[:, :, ['C1', 'C3']], :] - tm.assert_frame_equal(result, expected) - - # not sorted - def f(): - df.loc['A1', ('a', slice('foo'))] - - pytest.raises(UnsortedIndexError, f) - - # GH 16734: not sorted, but no real slicing - tm.assert_frame_equal(df.loc['A1', (slice(None), 'foo')], - df.loc['A1'].iloc[:, [0, 2]]) - - df = df.sort_index(axis=1) - - # slicing - df.loc['A1', (slice(None), 'foo')] - df.loc[(slice(None), slice(None), ['C1', 'C3']), (slice(None), 'foo')] - - # setitem - df.loc(axis=0)[:, :, ['C1', 'C3']] = -10 - - def test_loc_axis_arguments(self): - - index = MultiIndex.from_product([_mklbl('A', 4), _mklbl('B', 2), - _mklbl('C', 4), _mklbl('D', 2)]) - columns = MultiIndex.from_tuples([('a', 'foo'), ('a', 'bar'), - ('b', 'foo'), ('b', 'bah')], - names=['lvl0', 'lvl1']) - df = DataFrame(np.arange(len(index) * len(columns), dtype='int64') - .reshape((len(index), len(columns))), - index=index, - columns=columns).sort_index().sort_index(axis=1) - - # axis 0 - result = df.loc(axis=0)['A1':'A3', :, ['C1', 'C3']] - expected = df.loc[[tuple([a, b, c, d]) - for a, b, c, d in df.index.values - if (a == 'A1' or a == 'A2' or a == 'A3') and ( - c == 'C1' or c == 'C3')]] - tm.assert_frame_equal(result, expected) - - result = df.loc(axis='index')[:, :, ['C1', 'C3']] - expected = df.loc[[tuple([a, b, c, d]) - for a, b, c, d in df.index.values - if (c == 'C1' or c == 'C3')]] - tm.assert_frame_equal(result, expected) - - # axis 1 - result = df.loc(axis=1)[:, 'foo'] - expected = df.loc[:, (slice(None), 'foo')] - tm.assert_frame_equal(result, expected) - - result = df.loc(axis='columns')[:, 'foo'] - expected = df.loc[:, (slice(None), 'foo')] - tm.assert_frame_equal(result, expected) - - # invalid axis - def f(): - df.loc(axis=-1)[:, :, ['C1', 'C3']] - - pytest.raises(ValueError, f) - - def f(): - df.loc(axis=2)[:, :, ['C1', 'C3']] - - pytest.raises(ValueError, f) - - def f(): - df.loc(axis='foo')[:, :, ['C1', 'C3']] - - pytest.raises(ValueError, f) - - def test_per_axis_per_level_setitem(self): - - # test index maker - idx = pd.IndexSlice - - # test multi-index slicing with per axis and per index controls - index = MultiIndex.from_tuples([('A', 1), ('A', 2), - ('A', 3), ('B', 1)], - names=['one', 'two']) - columns = MultiIndex.from_tuples([('a', 'foo'), ('a', 'bar'), - ('b', 'foo'), ('b', 'bah')], - names=['lvl0', 'lvl1']) - - df_orig = DataFrame( - np.arange(16, dtype='int64').reshape( - 4, 4), index=index, columns=columns) - df_orig = df_orig.sort_index(axis=0).sort_index(axis=1) - - # identity - df = df_orig.copy() - df.loc[(slice(None), slice(None)), :] = 100 - expected = df_orig.copy() - expected.iloc[:, :] = 100 - tm.assert_frame_equal(df, expected) - - df = df_orig.copy() - df.loc(axis=0)[:, :] = 100 - expected = df_orig.copy() - expected.iloc[:, :] = 100 - tm.assert_frame_equal(df, expected) - - df = df_orig.copy() - df.loc[(slice(None), slice(None)), (slice(None), slice(None))] = 100 - expected = df_orig.copy() - expected.iloc[:, :] = 100 - tm.assert_frame_equal(df, expected) - - df = df_orig.copy() - df.loc[:, (slice(None), slice(None))] = 100 - expected = df_orig.copy() - expected.iloc[:, :] = 100 - tm.assert_frame_equal(df, expected) - - # index - df = df_orig.copy() - df.loc[(slice(None), [1]), :] = 100 - expected = df_orig.copy() - expected.iloc[[0, 3]] = 100 - tm.assert_frame_equal(df, expected) - - df = df_orig.copy() - df.loc[(slice(None), 1), :] = 100 - expected = df_orig.copy() - expected.iloc[[0, 3]] = 100 - tm.assert_frame_equal(df, expected) - - df = df_orig.copy() - df.loc(axis=0)[:, 1] = 100 - expected = df_orig.copy() - expected.iloc[[0, 3]] = 100 - tm.assert_frame_equal(df, expected) - - # columns - df = df_orig.copy() - df.loc[:, (slice(None), ['foo'])] = 100 - expected = df_orig.copy() - expected.iloc[:, [1, 3]] = 100 - tm.assert_frame_equal(df, expected) - - # both - df = df_orig.copy() - df.loc[(slice(None), 1), (slice(None), ['foo'])] = 100 - expected = df_orig.copy() - expected.iloc[[0, 3], [1, 3]] = 100 - tm.assert_frame_equal(df, expected) - - df = df_orig.copy() - df.loc[idx[:, 1], idx[:, ['foo']]] = 100 - expected = df_orig.copy() - expected.iloc[[0, 3], [1, 3]] = 100 - tm.assert_frame_equal(df, expected) - - df = df_orig.copy() - df.loc['A', 'a'] = 100 - expected = df_orig.copy() - expected.iloc[0:3, 0:2] = 100 - tm.assert_frame_equal(df, expected) - - # setting with a list-like - df = df_orig.copy() +def test_per_axis_per_level_getitem(): + + # GH6134 + # example test case + ix = MultiIndex.from_product([_mklbl('A', 5), _mklbl('B', 7), _mklbl( + 'C', 4), _mklbl('D', 2)]) + df = DataFrame(np.arange(len(ix.get_values())), index=ix) + + result = df.loc[(slice('A1', 'A3'), slice(None), ['C1', 'C3']), :] + expected = df.loc[[tuple([a, b, c, d]) + for a, b, c, d in df.index.values + if (a == 'A1' or a == 'A2' or a == 'A3') and ( + c == 'C1' or c == 'C3')]] + tm.assert_frame_equal(result, expected) + + expected = df.loc[[tuple([a, b, c, d]) + for a, b, c, d in df.index.values + if (a == 'A1' or a == 'A2' or a == 'A3') and ( + c == 'C1' or c == 'C2' or c == 'C3')]] + result = df.loc[(slice('A1', 'A3'), slice(None), slice('C1', 'C3')), :] + tm.assert_frame_equal(result, expected) + + # test multi-index slicing with per axis and per index controls + index = MultiIndex.from_tuples([('A', 1), ('A', 2), + ('A', 3), ('B', 1)], + names=['one', 'two']) + columns = MultiIndex.from_tuples([('a', 'foo'), ('a', 'bar'), + ('b', 'foo'), ('b', 'bah')], + names=['lvl0', 'lvl1']) + + df = DataFrame( + np.arange(16, dtype='int64').reshape( + 4, 4), index=index, columns=columns) + df = df.sort_index(axis=0).sort_index(axis=1) + + # identity + result = df.loc[(slice(None), slice(None)), :] + tm.assert_frame_equal(result, df) + result = df.loc[(slice(None), slice(None)), (slice(None), slice(None))] + tm.assert_frame_equal(result, df) + result = df.loc[:, (slice(None), slice(None))] + tm.assert_frame_equal(result, df) + + # index + result = df.loc[(slice(None), [1]), :] + expected = df.iloc[[0, 3]] + tm.assert_frame_equal(result, expected) + + result = df.loc[(slice(None), 1), :] + expected = df.iloc[[0, 3]] + tm.assert_frame_equal(result, expected) + + # columns + result = df.loc[:, (slice(None), ['foo'])] + expected = df.iloc[:, [1, 3]] + tm.assert_frame_equal(result, expected) + + # both + result = df.loc[(slice(None), 1), (slice(None), ['foo'])] + expected = df.iloc[[0, 3], [1, 3]] + tm.assert_frame_equal(result, expected) + + result = df.loc['A', 'a'] + expected = DataFrame(dict(bar=[1, 5, 9], foo=[0, 4, 8]), + index=Index([1, 2, 3], name='two'), + columns=Index(['bar', 'foo'], name='lvl1')) + tm.assert_frame_equal(result, expected) + + result = df.loc[(slice(None), [1, 2]), :] + expected = df.iloc[[0, 1, 3]] + tm.assert_frame_equal(result, expected) + + # multi-level series + s = Series(np.arange(len(ix.get_values())), index=ix) + result = s.loc['A1':'A3', :, ['C1', 'C3']] + expected = s.loc[[tuple([a, b, c, d]) + for a, b, c, d in s.index.values + if (a == 'A1' or a == 'A2' or a == 'A3') and ( + c == 'C1' or c == 'C3')]] + tm.assert_series_equal(result, expected) + + # boolean indexers + result = df.loc[(slice(None), df.loc[:, ('a', 'bar')] > 5), :] + expected = df.iloc[[2, 3]] + tm.assert_frame_equal(result, expected) + + def f(): + df.loc[(slice(None), np.array([True, False])), :] + + pytest.raises(ValueError, f) + + # ambiguous cases + # these can be multiply interpreted (e.g. in this case + # as df.loc[slice(None),[1]] as well + pytest.raises(KeyError, lambda: df.loc[slice(None), [1]]) + + result = df.loc[(slice(None), [1]), :] + expected = df.iloc[[0, 3]] + tm.assert_frame_equal(result, expected) + + # not lexsorted + assert df.index.lexsort_depth == 2 + df = df.sort_index(level=1, axis=0) + assert df.index.lexsort_depth == 0 + + msg = ('MultiIndex slicing requires the index to be ' + r'lexsorted: slicing on levels \[1\], lexsort depth 0') + with pytest.raises(UnsortedIndexError, match=msg): + df.loc[(slice(None), slice('bar')), :] + + # GH 16734: not sorted, but no real slicing + result = df.loc[(slice(None), df.loc[:, ('a', 'bar')] > 5), :] + tm.assert_frame_equal(result, df.iloc[[1, 3], :]) + + +def test_multiindex_slicers_non_unique(): + + # GH 7106 + # non-unique mi index support + df = (DataFrame(dict(A=['foo', 'foo', 'foo', 'foo'], + B=['a', 'a', 'a', 'a'], + C=[1, 2, 1, 3], + D=[1, 2, 3, 4])) + .set_index(['A', 'B', 'C']).sort_index()) + assert not df.index.is_unique + expected = (DataFrame(dict(A=['foo', 'foo'], B=['a', 'a'], + C=[1, 1], D=[1, 3])) + .set_index(['A', 'B', 'C']).sort_index()) + result = df.loc[(slice(None), slice(None), 1), :] + tm.assert_frame_equal(result, expected) + + # this is equivalent of an xs expression + result = df.xs(1, level=2, drop_level=False) + tm.assert_frame_equal(result, expected) + + df = (DataFrame(dict(A=['foo', 'foo', 'foo', 'foo'], + B=['a', 'a', 'a', 'a'], + C=[1, 2, 1, 2], + D=[1, 2, 3, 4])) + .set_index(['A', 'B', 'C']).sort_index()) + assert not df.index.is_unique + expected = (DataFrame(dict(A=['foo', 'foo'], B=['a', 'a'], + C=[1, 1], D=[1, 3])) + .set_index(['A', 'B', 'C']).sort_index()) + result = df.loc[(slice(None), slice(None), 1), :] + assert not result.index.is_unique + tm.assert_frame_equal(result, expected) + + # GH12896 + # numpy-implementation dependent bug + ints = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 12, 13, 14, 14, 16, + 17, 18, 19, 200000, 200000] + n = len(ints) + idx = MultiIndex.from_arrays([['a'] * n, ints]) + result = Series([1] * n, index=idx) + result = result.sort_index() + result = result.loc[(slice(None), slice(100000))] + expected = Series([1] * (n - 2), index=idx[:-2]).sort_index() + tm.assert_series_equal(result, expected) + + +def test_multiindex_slicers_datetimelike(): + + # GH 7429 + # buggy/inconsistent behavior when slicing with datetime-like + import datetime + dates = [datetime.datetime(2012, 1, 1, 12, 12, 12) + + datetime.timedelta(days=i) for i in range(6)] + freq = [1, 2] + index = MultiIndex.from_product( + [dates, freq], names=['date', 'frequency']) + + df = DataFrame( + np.arange(6 * 2 * 4, dtype='int64').reshape( + -1, 4), index=index, columns=list('ABCD')) + + # multi-axis slicing + idx = pd.IndexSlice + expected = df.iloc[[0, 2, 4], [0, 1]] + result = df.loc[(slice(Timestamp('2012-01-01 12:12:12'), + Timestamp('2012-01-03 12:12:12')), + slice(1, 1)), slice('A', 'B')] + tm.assert_frame_equal(result, expected) + + result = df.loc[(idx[Timestamp('2012-01-01 12:12:12'):Timestamp( + '2012-01-03 12:12:12')], idx[1:1]), slice('A', 'B')] + tm.assert_frame_equal(result, expected) + + result = df.loc[(slice(Timestamp('2012-01-01 12:12:12'), + Timestamp('2012-01-03 12:12:12')), 1), + slice('A', 'B')] + tm.assert_frame_equal(result, expected) + + # with strings + result = df.loc[(slice('2012-01-01 12:12:12', '2012-01-03 12:12:12'), + slice(1, 1)), slice('A', 'B')] + tm.assert_frame_equal(result, expected) + + result = df.loc[(idx['2012-01-01 12:12:12':'2012-01-03 12:12:12'], 1), + idx['A', 'B']] + tm.assert_frame_equal(result, expected) + + +def test_multiindex_slicers_edges(): + # GH 8132 + # various edge cases + df = DataFrame( + {'A': ['A0'] * 5 + ['A1'] * 5 + ['A2'] * 5, + 'B': ['B0', 'B0', 'B1', 'B1', 'B2'] * 3, + 'DATE': ["2013-06-11", "2013-07-02", "2013-07-09", "2013-07-30", + "2013-08-06", "2013-06-11", "2013-07-02", "2013-07-09", + "2013-07-30", "2013-08-06", "2013-09-03", "2013-10-01", + "2013-07-09", "2013-08-06", "2013-09-03"], + 'VALUES': [22, 35, 14, 9, 4, 40, 18, 4, 2, 5, 1, 2, 3, 4, 2]}) + + df['DATE'] = pd.to_datetime(df['DATE']) + df1 = df.set_index(['A', 'B', 'DATE']) + df1 = df1.sort_index() + + # A1 - Get all values under "A0" and "A1" + result = df1.loc[(slice('A1')), :] + expected = df1.iloc[0:10] + tm.assert_frame_equal(result, expected) + + # A2 - Get all values from the start to "A2" + result = df1.loc[(slice('A2')), :] + expected = df1 + tm.assert_frame_equal(result, expected) + + # A3 - Get all values under "B1" or "B2" + result = df1.loc[(slice(None), slice('B1', 'B2')), :] + expected = df1.iloc[[2, 3, 4, 7, 8, 9, 12, 13, 14]] + tm.assert_frame_equal(result, expected) + + # A4 - Get all values between 2013-07-02 and 2013-07-09 + result = df1.loc[(slice(None), slice(None), + slice('20130702', '20130709')), :] + expected = df1.iloc[[1, 2, 6, 7, 12]] + tm.assert_frame_equal(result, expected) + + # B1 - Get all values in B0 that are also under A0, A1 and A2 + result = df1.loc[(slice('A2'), slice('B0')), :] + expected = df1.iloc[[0, 1, 5, 6, 10, 11]] + tm.assert_frame_equal(result, expected) + + # B2 - Get all values in B0, B1 and B2 (similar to what #2 is doing for + # the As) + result = df1.loc[(slice(None), slice('B2')), :] + expected = df1 + tm.assert_frame_equal(result, expected) + + # B3 - Get all values from B1 to B2 and up to 2013-08-06 + result = df1.loc[(slice(None), slice('B1', 'B2'), + slice('2013-08-06')), :] + expected = df1.iloc[[2, 3, 4, 7, 8, 9, 12, 13]] + tm.assert_frame_equal(result, expected) + + # B4 - Same as A4 but the start of the date slice is not a key. + # shows indexing on a partial selection slice + result = df1.loc[(slice(None), slice(None), + slice('20130701', '20130709')), :] + expected = df1.iloc[[1, 2, 6, 7, 12]] + tm.assert_frame_equal(result, expected) + + +def test_per_axis_per_level_doc_examples(): + + # test index maker + idx = pd.IndexSlice + + # from indexing.rst / advanced + index = MultiIndex.from_product([_mklbl('A', 4), _mklbl('B', 2), + _mklbl('C', 4), _mklbl('D', 2)]) + columns = MultiIndex.from_tuples([('a', 'foo'), ('a', 'bar'), + ('b', 'foo'), ('b', 'bah')], + names=['lvl0', 'lvl1']) + df = DataFrame(np.arange(len(index) * len(columns), dtype='int64') + .reshape((len(index), len(columns))), + index=index, columns=columns) + result = df.loc[(slice('A1', 'A3'), slice(None), ['C1', 'C3']), :] + expected = df.loc[[tuple([a, b, c, d]) + for a, b, c, d in df.index.values + if (a == 'A1' or a == 'A2' or a == 'A3') and ( + c == 'C1' or c == 'C3')]] + tm.assert_frame_equal(result, expected) + result = df.loc[idx['A1':'A3', :, ['C1', 'C3']], :] + tm.assert_frame_equal(result, expected) + + result = df.loc[(slice(None), slice(None), ['C1', 'C3']), :] + expected = df.loc[[tuple([a, b, c, d]) + for a, b, c, d in df.index.values + if (c == 'C1' or c == 'C3')]] + tm.assert_frame_equal(result, expected) + result = df.loc[idx[:, :, ['C1', 'C3']], :] + tm.assert_frame_equal(result, expected) + + # not sorted + def f(): + df.loc['A1', ('a', slice('foo'))] + + pytest.raises(UnsortedIndexError, f) + + # GH 16734: not sorted, but no real slicing + tm.assert_frame_equal(df.loc['A1', (slice(None), 'foo')], + df.loc['A1'].iloc[:, [0, 2]]) + + df = df.sort_index(axis=1) + + # slicing + df.loc['A1', (slice(None), 'foo')] + df.loc[(slice(None), slice(None), ['C1', 'C3']), (slice(None), 'foo')] + + # setitem + df.loc(axis=0)[:, :, ['C1', 'C3']] = -10 + + +def test_loc_axis_arguments(): + + index = MultiIndex.from_product([_mklbl('A', 4), _mklbl('B', 2), + _mklbl('C', 4), _mklbl('D', 2)]) + columns = MultiIndex.from_tuples([('a', 'foo'), ('a', 'bar'), + ('b', 'foo'), ('b', 'bah')], + names=['lvl0', 'lvl1']) + df = DataFrame(np.arange(len(index) * len(columns), dtype='int64') + .reshape((len(index), len(columns))), + index=index, + columns=columns).sort_index().sort_index(axis=1) + + # axis 0 + result = df.loc(axis=0)['A1':'A3', :, ['C1', 'C3']] + expected = df.loc[[tuple([a, b, c, d]) + for a, b, c, d in df.index.values + if (a == 'A1' or a == 'A2' or a == 'A3') and ( + c == 'C1' or c == 'C3')]] + tm.assert_frame_equal(result, expected) + + result = df.loc(axis='index')[:, :, ['C1', 'C3']] + expected = df.loc[[tuple([a, b, c, d]) + for a, b, c, d in df.index.values + if (c == 'C1' or c == 'C3')]] + tm.assert_frame_equal(result, expected) + + # axis 1 + result = df.loc(axis=1)[:, 'foo'] + expected = df.loc[:, (slice(None), 'foo')] + tm.assert_frame_equal(result, expected) + + result = df.loc(axis='columns')[:, 'foo'] + expected = df.loc[:, (slice(None), 'foo')] + tm.assert_frame_equal(result, expected) + + # invalid axis + def f(): + df.loc(axis=-1)[:, :, ['C1', 'C3']] + + pytest.raises(ValueError, f) + + def f(): + df.loc(axis=2)[:, :, ['C1', 'C3']] + + pytest.raises(ValueError, f) + + def f(): + df.loc(axis='foo')[:, :, ['C1', 'C3']] + + pytest.raises(ValueError, f) + + +def test_per_axis_per_level_setitem(): + + # test index maker + idx = pd.IndexSlice + + # test multi-index slicing with per axis and per index controls + index = MultiIndex.from_tuples([('A', 1), ('A', 2), + ('A', 3), ('B', 1)], + names=['one', 'two']) + columns = MultiIndex.from_tuples([('a', 'foo'), ('a', 'bar'), + ('b', 'foo'), ('b', 'bah')], + names=['lvl0', 'lvl1']) + + df_orig = DataFrame( + np.arange(16, dtype='int64').reshape( + 4, 4), index=index, columns=columns) + df_orig = df_orig.sort_index(axis=0).sort_index(axis=1) + + # identity + df = df_orig.copy() + df.loc[(slice(None), slice(None)), :] = 100 + expected = df_orig.copy() + expected.iloc[:, :] = 100 + tm.assert_frame_equal(df, expected) + + df = df_orig.copy() + df.loc(axis=0)[:, :] = 100 + expected = df_orig.copy() + expected.iloc[:, :] = 100 + tm.assert_frame_equal(df, expected) + + df = df_orig.copy() + df.loc[(slice(None), slice(None)), (slice(None), slice(None))] = 100 + expected = df_orig.copy() + expected.iloc[:, :] = 100 + tm.assert_frame_equal(df, expected) + + df = df_orig.copy() + df.loc[:, (slice(None), slice(None))] = 100 + expected = df_orig.copy() + expected.iloc[:, :] = 100 + tm.assert_frame_equal(df, expected) + + # index + df = df_orig.copy() + df.loc[(slice(None), [1]), :] = 100 + expected = df_orig.copy() + expected.iloc[[0, 3]] = 100 + tm.assert_frame_equal(df, expected) + + df = df_orig.copy() + df.loc[(slice(None), 1), :] = 100 + expected = df_orig.copy() + expected.iloc[[0, 3]] = 100 + tm.assert_frame_equal(df, expected) + + df = df_orig.copy() + df.loc(axis=0)[:, 1] = 100 + expected = df_orig.copy() + expected.iloc[[0, 3]] = 100 + tm.assert_frame_equal(df, expected) + + # columns + df = df_orig.copy() + df.loc[:, (slice(None), ['foo'])] = 100 + expected = df_orig.copy() + expected.iloc[:, [1, 3]] = 100 + tm.assert_frame_equal(df, expected) + + # both + df = df_orig.copy() + df.loc[(slice(None), 1), (slice(None), ['foo'])] = 100 + expected = df_orig.copy() + expected.iloc[[0, 3], [1, 3]] = 100 + tm.assert_frame_equal(df, expected) + + df = df_orig.copy() + df.loc[idx[:, 1], idx[:, ['foo']]] = 100 + expected = df_orig.copy() + expected.iloc[[0, 3], [1, 3]] = 100 + tm.assert_frame_equal(df, expected) + + df = df_orig.copy() + df.loc['A', 'a'] = 100 + expected = df_orig.copy() + expected.iloc[0:3, 0:2] = 100 + tm.assert_frame_equal(df, expected) + + # setting with a list-like + df = df_orig.copy() + df.loc[(slice(None), 1), (slice(None), ['foo'])] = np.array( + [[100, 100], [100, 100]], dtype='int64') + expected = df_orig.copy() + expected.iloc[[0, 3], [1, 3]] = 100 + tm.assert_frame_equal(df, expected) + + # not enough values + df = df_orig.copy() + + def f(): + df.loc[(slice(None), 1), (slice(None), ['foo'])] = np.array( + [[100], [100, 100]], dtype='int64') + + pytest.raises(ValueError, f) + + def f(): df.loc[(slice(None), 1), (slice(None), ['foo'])] = np.array( - [[100, 100], [100, 100]], dtype='int64') - expected = df_orig.copy() - expected.iloc[[0, 3], [1, 3]] = 100 - tm.assert_frame_equal(df, expected) - - # not enough values - df = df_orig.copy() - - def f(): - df.loc[(slice(None), 1), (slice(None), ['foo'])] = np.array( - [[100], [100, 100]], dtype='int64') - - pytest.raises(ValueError, f) - - def f(): - df.loc[(slice(None), 1), (slice(None), ['foo'])] = np.array( - [100, 100, 100, 100], dtype='int64') - - pytest.raises(ValueError, f) - - # with an alignable rhs - df = df_orig.copy() - df.loc[(slice(None), 1), (slice(None), ['foo'])] = df.loc[(slice( - None), 1), (slice(None), ['foo'])] * 5 - expected = df_orig.copy() - expected.iloc[[0, 3], [1, 3]] = expected.iloc[[0, 3], [1, 3]] * 5 - tm.assert_frame_equal(df, expected) - - df = df_orig.copy() - df.loc[(slice(None), 1), (slice(None), ['foo'])] *= df.loc[(slice( - None), 1), (slice(None), ['foo'])] - expected = df_orig.copy() - expected.iloc[[0, 3], [1, 3]] *= expected.iloc[[0, 3], [1, 3]] - tm.assert_frame_equal(df, expected) - - rhs = df_orig.loc[(slice(None), 1), (slice(None), ['foo'])].copy() - rhs.loc[:, ('c', 'bah')] = 10 - df = df_orig.copy() - df.loc[(slice(None), 1), (slice(None), ['foo'])] *= rhs - expected = df_orig.copy() - expected.iloc[[0, 3], [1, 3]] *= expected.iloc[[0, 3], [1, 3]] - tm.assert_frame_equal(df, expected) - - def test_multiindex_label_slicing_with_negative_step(self): - s = Series(np.arange(20), - MultiIndex.from_product([list('abcde'), np.arange(4)])) - SLC = pd.IndexSlice - - def assert_slices_equivalent(l_slc, i_slc): - tm.assert_series_equal(s.loc[l_slc], s.iloc[i_slc]) - tm.assert_series_equal(s[l_slc], s.iloc[i_slc]) - with catch_warnings(record=True): - tm.assert_series_equal(s.ix[l_slc], s.iloc[i_slc]) - - assert_slices_equivalent(SLC[::-1], SLC[::-1]) - - assert_slices_equivalent(SLC['d'::-1], SLC[15::-1]) - assert_slices_equivalent(SLC[('d', )::-1], SLC[15::-1]) - - assert_slices_equivalent(SLC[:'d':-1], SLC[:11:-1]) - assert_slices_equivalent(SLC[:('d', ):-1], SLC[:11:-1]) - - assert_slices_equivalent(SLC['d':'b':-1], SLC[15:3:-1]) - assert_slices_equivalent(SLC[('d', ):'b':-1], SLC[15:3:-1]) - assert_slices_equivalent(SLC['d':('b', ):-1], SLC[15:3:-1]) - assert_slices_equivalent(SLC[('d', ):('b', ):-1], SLC[15:3:-1]) - assert_slices_equivalent(SLC['b':'d':-1], SLC[:0]) - - assert_slices_equivalent(SLC[('c', 2)::-1], SLC[10::-1]) - assert_slices_equivalent(SLC[:('c', 2):-1], SLC[:9:-1]) - assert_slices_equivalent(SLC[('e', 0):('c', 2):-1], SLC[16:9:-1]) - - def test_multiindex_slice_first_level(self): - # GH 12697 - freq = ['a', 'b', 'c', 'd'] - idx = MultiIndex.from_product([freq, np.arange(500)]) - df = DataFrame(list(range(2000)), index=idx, columns=['Test']) - df_slice = df.loc[pd.IndexSlice[:, 30:70], :] - result = df_slice.loc['a'] - expected = DataFrame(list(range(30, 71)), - columns=['Test'], index=range(30, 71)) - tm.assert_frame_equal(result, expected) - result = df_slice.loc['d'] - expected = DataFrame(list(range(1530, 1571)), - columns=['Test'], index=range(30, 71)) - tm.assert_frame_equal(result, expected) - - def test_int_series_slicing( - self, multiindex_year_month_day_dataframe_random_data): - ymd = multiindex_year_month_day_dataframe_random_data - s = ymd['A'] - result = s[5:] - expected = s.reindex(s.index[5:]) - tm.assert_series_equal(result, expected) - - exp = ymd['A'].copy() - s[5:] = 0 - exp.values[5:] = 0 - tm.assert_numpy_array_equal(s.values, exp.values) - - result = ymd[5:] - expected = ymd.reindex(s.index[5:]) - tm.assert_frame_equal(result, expected) + [100, 100, 100, 100], dtype='int64') + + pytest.raises(ValueError, f) + + # with an alignable rhs + df = df_orig.copy() + df.loc[(slice(None), 1), (slice(None), ['foo'])] = df.loc[(slice( + None), 1), (slice(None), ['foo'])] * 5 + expected = df_orig.copy() + expected.iloc[[0, 3], [1, 3]] = expected.iloc[[0, 3], [1, 3]] * 5 + tm.assert_frame_equal(df, expected) + + df = df_orig.copy() + df.loc[(slice(None), 1), (slice(None), ['foo'])] *= df.loc[(slice( + None), 1), (slice(None), ['foo'])] + expected = df_orig.copy() + expected.iloc[[0, 3], [1, 3]] *= expected.iloc[[0, 3], [1, 3]] + tm.assert_frame_equal(df, expected) + + rhs = df_orig.loc[(slice(None), 1), (slice(None), ['foo'])].copy() + rhs.loc[:, ('c', 'bah')] = 10 + df = df_orig.copy() + df.loc[(slice(None), 1), (slice(None), ['foo'])] *= rhs + expected = df_orig.copy() + expected.iloc[[0, 3], [1, 3]] *= expected.iloc[[0, 3], [1, 3]] + tm.assert_frame_equal(df, expected) + + +@pytest.mark.filterwarnings("ignore:\\n.ix:DeprecationWarning") +def test_multiindex_label_slicing_with_negative_step(): + s = Series(np.arange(20), + MultiIndex.from_product([list('abcde'), np.arange(4)])) + SLC = pd.IndexSlice + + def assert_slices_equivalent(l_slc, i_slc): + tm.assert_series_equal(s.loc[l_slc], s.iloc[i_slc]) + tm.assert_series_equal(s[l_slc], s.iloc[i_slc]) + tm.assert_series_equal(s.ix[l_slc], s.iloc[i_slc]) + + assert_slices_equivalent(SLC[::-1], SLC[::-1]) + + assert_slices_equivalent(SLC['d'::-1], SLC[15::-1]) + assert_slices_equivalent(SLC[('d', )::-1], SLC[15::-1]) + + assert_slices_equivalent(SLC[:'d':-1], SLC[:11:-1]) + assert_slices_equivalent(SLC[:('d', ):-1], SLC[:11:-1]) + + assert_slices_equivalent(SLC['d':'b':-1], SLC[15:3:-1]) + assert_slices_equivalent(SLC[('d', ):'b':-1], SLC[15:3:-1]) + assert_slices_equivalent(SLC['d':('b', ):-1], SLC[15:3:-1]) + assert_slices_equivalent(SLC[('d', ):('b', ):-1], SLC[15:3:-1]) + assert_slices_equivalent(SLC['b':'d':-1], SLC[:0]) + + assert_slices_equivalent(SLC[('c', 2)::-1], SLC[10::-1]) + assert_slices_equivalent(SLC[:('c', 2):-1], SLC[:9:-1]) + assert_slices_equivalent(SLC[('e', 0):('c', 2):-1], SLC[16:9:-1]) + + +def test_multiindex_slice_first_level(): + # GH 12697 + freq = ['a', 'b', 'c', 'd'] + idx = MultiIndex.from_product([freq, np.arange(500)]) + df = DataFrame(list(range(2000)), index=idx, columns=['Test']) + df_slice = df.loc[pd.IndexSlice[:, 30:70], :] + result = df_slice.loc['a'] + expected = DataFrame(list(range(30, 71)), + columns=['Test'], index=range(30, 71)) + tm.assert_frame_equal(result, expected) + result = df_slice.loc['d'] + expected = DataFrame(list(range(1530, 1571)), + columns=['Test'], index=range(30, 71)) + tm.assert_frame_equal(result, expected) + + +def test_int_series_slicing(multiindex_year_month_day_dataframe_random_data): + ymd = multiindex_year_month_day_dataframe_random_data + s = ymd['A'] + result = s[5:] + expected = s.reindex(s.index[5:]) + tm.assert_series_equal(result, expected) + + exp = ymd['A'].copy() + s[5:] = 0 + exp.values[5:] = 0 + tm.assert_numpy_array_equal(s.values, exp.values) + + result = ymd[5:] + expected = ymd.reindex(s.index[5:]) + tm.assert_frame_equal(result, expected) diff --git a/pandas/tests/indexing/multiindex/test_sorted.py b/pandas/tests/indexing/multiindex/test_sorted.py index 898959d74383a..4b3faee07805c 100644 --- a/pandas/tests/indexing/multiindex/test_sorted.py +++ b/pandas/tests/indexing/multiindex/test_sorted.py @@ -7,86 +7,89 @@ from pandas.util import testing as tm -class TestMultiIndexSorted(object): - def test_getitem_multilevel_index_tuple_not_sorted(self): - index_columns = list("abc") - df = DataFrame([[0, 1, 0, "x"], [0, 0, 1, "y"]], - columns=index_columns + ["data"]) - df = df.set_index(index_columns) - query_index = df.index[:1] - rs = df.loc[query_index, "data"] - - xp_idx = MultiIndex.from_tuples([(0, 1, 0)], names=['a', 'b', 'c']) - xp = Series(['x'], index=xp_idx, name='data') - tm.assert_series_equal(rs, xp) - - def test_getitem_slice_not_sorted(self, multiindex_dataframe_random_data): - frame = multiindex_dataframe_random_data - df = frame.sort_index(level=1).T - - # buglet with int typechecking - result = df.iloc[:, :np.int32(3)] - expected = df.reindex(columns=df.columns[:3]) - tm.assert_frame_equal(result, expected) - - def test_frame_getitem_not_sorted2(self): - # 13431 - df = DataFrame({'col1': ['b', 'd', 'b', 'a'], - 'col2': [3, 1, 1, 2], - 'data': ['one', 'two', 'three', 'four']}) - - df2 = df.set_index(['col1', 'col2']) - df2_original = df2.copy() - - df2.index.set_levels(['b', 'd', 'a'], level='col1', inplace=True) - df2.index.set_labels([0, 1, 0, 2], level='col1', inplace=True) - assert not df2.index.is_lexsorted() - assert not df2.index.is_monotonic - - assert df2_original.index.equals(df2.index) - expected = df2.sort_index() - assert expected.index.is_lexsorted() - assert expected.index.is_monotonic - - result = df2.sort_index(level=0) - assert result.index.is_lexsorted() - assert result.index.is_monotonic - tm.assert_frame_equal(result, expected) - - def test_frame_getitem_not_sorted(self, multiindex_dataframe_random_data): - frame = multiindex_dataframe_random_data - df = frame.T - df['foo', 'four'] = 'foo' - - arrays = [np.array(x) for x in zip(*df.columns.values)] - - result = df['foo'] - result2 = df.loc[:, 'foo'] - expected = df.reindex(columns=df.columns[arrays[0] == 'foo']) - expected.columns = expected.columns.droplevel(0) - tm.assert_frame_equal(result, expected) - tm.assert_frame_equal(result2, expected) - - df = df.T - result = df.xs('foo') - result2 = df.loc['foo'] - expected = df.reindex(df.index[arrays[0] == 'foo']) - expected.index = expected.index.droplevel(0) - tm.assert_frame_equal(result, expected) - tm.assert_frame_equal(result2, expected) - - def test_series_getitem_not_sorted(self): - arrays = [['bar', 'bar', 'baz', 'baz', 'qux', 'qux', 'foo', 'foo'], - ['one', 'two', 'one', 'two', 'one', 'two', 'one', 'two']] - tuples = lzip(*arrays) - index = MultiIndex.from_tuples(tuples) - s = Series(randn(8), index=index) - - arrays = [np.array(x) for x in zip(*index.values)] - - result = s['qux'] - result2 = s.loc['qux'] - expected = s[arrays[0] == 'qux'] - expected.index = expected.index.droplevel(0) - tm.assert_series_equal(result, expected) - tm.assert_series_equal(result2, expected) +def test_getitem_multilevel_index_tuple_not_sorted(): + index_columns = list("abc") + df = DataFrame([[0, 1, 0, "x"], [0, 0, 1, "y"]], + columns=index_columns + ["data"]) + df = df.set_index(index_columns) + query_index = df.index[:1] + rs = df.loc[query_index, "data"] + + xp_idx = MultiIndex.from_tuples([(0, 1, 0)], names=['a', 'b', 'c']) + xp = Series(['x'], index=xp_idx, name='data') + tm.assert_series_equal(rs, xp) + + +def test_getitem_slice_not_sorted(multiindex_dataframe_random_data): + frame = multiindex_dataframe_random_data + df = frame.sort_index(level=1).T + + # buglet with int typechecking + result = df.iloc[:, :np.int32(3)] + expected = df.reindex(columns=df.columns[:3]) + tm.assert_frame_equal(result, expected) + + +def test_frame_getitem_not_sorted2(): + # 13431 + df = DataFrame({'col1': ['b', 'd', 'b', 'a'], + 'col2': [3, 1, 1, 2], + 'data': ['one', 'two', 'three', 'four']}) + + df2 = df.set_index(['col1', 'col2']) + df2_original = df2.copy() + + df2.index.set_levels(['b', 'd', 'a'], level='col1', inplace=True) + df2.index.set_labels([0, 1, 0, 2], level='col1', inplace=True) + assert not df2.index.is_lexsorted() + assert not df2.index.is_monotonic + + assert df2_original.index.equals(df2.index) + expected = df2.sort_index() + assert expected.index.is_lexsorted() + assert expected.index.is_monotonic + + result = df2.sort_index(level=0) + assert result.index.is_lexsorted() + assert result.index.is_monotonic + tm.assert_frame_equal(result, expected) + + +def test_frame_getitem_not_sorted(multiindex_dataframe_random_data): + frame = multiindex_dataframe_random_data + df = frame.T + df['foo', 'four'] = 'foo' + + arrays = [np.array(x) for x in zip(*df.columns.values)] + + result = df['foo'] + result2 = df.loc[:, 'foo'] + expected = df.reindex(columns=df.columns[arrays[0] == 'foo']) + expected.columns = expected.columns.droplevel(0) + tm.assert_frame_equal(result, expected) + tm.assert_frame_equal(result2, expected) + + df = df.T + result = df.xs('foo') + result2 = df.loc['foo'] + expected = df.reindex(df.index[arrays[0] == 'foo']) + expected.index = expected.index.droplevel(0) + tm.assert_frame_equal(result, expected) + tm.assert_frame_equal(result2, expected) + + +def test_series_getitem_not_sorted(): + arrays = [['bar', 'bar', 'baz', 'baz', 'qux', 'qux', 'foo', 'foo'], + ['one', 'two', 'one', 'two', 'one', 'two', 'one', 'two']] + tuples = lzip(*arrays) + index = MultiIndex.from_tuples(tuples) + s = Series(randn(8), index=index) + + arrays = [np.array(x) for x in zip(*index.values)] + + result = s['qux'] + result2 = s.loc['qux'] + expected = s[arrays[0] == 'qux'] + expected.index = expected.index.droplevel(0) + tm.assert_series_equal(result, expected) + tm.assert_series_equal(result2, expected) diff --git a/pandas/tests/indexing/multiindex/test_xs.py b/pandas/tests/indexing/multiindex/test_xs.py index b8380e3a95f2a..594b09c88492f 100644 --- a/pandas/tests/indexing/multiindex/test_xs.py +++ b/pandas/tests/indexing/multiindex/test_xs.py @@ -8,157 +8,160 @@ from pandas.util import testing as tm -class TestMultiIndexXs(object): - - def test_xs_multiindex(self): - - # GH2903 - columns = MultiIndex.from_tuples( - [('a', 'foo'), ('a', 'bar'), ('b', 'hello'), - ('b', 'world')], names=['lvl0', 'lvl1']) - df = DataFrame(np.random.randn(4, 4), columns=columns) - df.sort_index(axis=1, inplace=True) - result = df.xs('a', level='lvl0', axis=1) - expected = df.iloc[:, 0:2].loc[:, 'a'] - tm.assert_frame_equal(result, expected) - - result = df.xs('foo', level='lvl1', axis=1) - expected = df.iloc[:, 1:2].copy() - expected.columns = expected.columns.droplevel('lvl1') - tm.assert_frame_equal(result, expected) - - def test_xs(self, multiindex_dataframe_random_data): - frame = multiindex_dataframe_random_data - xs = frame.xs(('bar', 'two')) - xs2 = frame.loc[('bar', 'two')] - - tm.assert_series_equal(xs, xs2) - tm.assert_almost_equal(xs.values, frame.values[4]) - - # GH 6574 - # missing values in returned index should be preserrved - acc = [ - ('a', 'abcde', 1), - ('b', 'bbcde', 2), - ('y', 'yzcde', 25), - ('z', 'xbcde', 24), - ('z', None, 26), - ('z', 'zbcde', 25), - ('z', 'ybcde', 26), - ] - df = DataFrame(acc, - columns=['a1', 'a2', 'cnt']).set_index(['a1', 'a2']) - expected = DataFrame({'cnt': [24, 26, 25, 26]}, index=Index( - ['xbcde', np.nan, 'zbcde', 'ybcde'], name='a2')) - - result = df.xs('z', level='a1') - tm.assert_frame_equal(result, expected) - - def test_xs_with_duplicates(self, multiindex_dataframe_random_data): - # Issue #13719 - frame = multiindex_dataframe_random_data - df_dup = concat([frame] * 2) - assert df_dup.index.is_unique is False - expected = concat([frame.xs('one', level='second')] * 2) - tm.assert_frame_equal(df_dup.xs('one', level='second'), expected) - tm.assert_frame_equal(df_dup.xs(['one'], level=['second']), expected) - - def test_xs_level(self, multiindex_dataframe_random_data): - frame = multiindex_dataframe_random_data - result = frame.xs('two', level='second') - expected = frame[frame.index.get_level_values(1) == 'two'] - expected.index = expected.index.droplevel(1) - - tm.assert_frame_equal(result, expected) - - index = MultiIndex.from_tuples([('x', 'y', 'z'), ('a', 'b', 'c'), ( - 'p', 'q', 'r')]) - df = DataFrame(np.random.randn(3, 5), index=index) - result = df.xs('c', level=2) - expected = df[1:2] - expected.index = expected.index.droplevel(2) - tm.assert_frame_equal(result, expected) - - # this is a copy in 0.14 - result = frame.xs('two', level='second') - - # setting this will give a SettingWithCopyError - # as we are trying to write a view - def f(x): - x[:] = 10 - - pytest.raises(com.SettingWithCopyError, f, result) - - def test_xs_level_multiple(self): - text = """ A B C D E +def test_xs_multiindex(): + + # GH2903 + columns = MultiIndex.from_tuples( + [('a', 'foo'), ('a', 'bar'), ('b', 'hello'), + ('b', 'world')], names=['lvl0', 'lvl1']) + df = DataFrame(np.random.randn(4, 4), columns=columns) + df.sort_index(axis=1, inplace=True) + result = df.xs('a', level='lvl0', axis=1) + expected = df.iloc[:, 0:2].loc[:, 'a'] + tm.assert_frame_equal(result, expected) + + result = df.xs('foo', level='lvl1', axis=1) + expected = df.iloc[:, 1:2].copy() + expected.columns = expected.columns.droplevel('lvl1') + tm.assert_frame_equal(result, expected) + + +def test_xs(multiindex_dataframe_random_data): + frame = multiindex_dataframe_random_data + xs = frame.xs(('bar', 'two')) + xs2 = frame.loc[('bar', 'two')] + + tm.assert_series_equal(xs, xs2) + tm.assert_almost_equal(xs.values, frame.values[4]) + + # GH 6574 + # missing values in returned index should be preserrved + acc = [ + ('a', 'abcde', 1), + ('b', 'bbcde', 2), + ('y', 'yzcde', 25), + ('z', 'xbcde', 24), + ('z', None, 26), + ('z', 'zbcde', 25), + ('z', 'ybcde', 26), + ] + df = DataFrame(acc, columns=['a1', 'a2', 'cnt']).set_index(['a1', 'a2']) + expected = DataFrame({'cnt': [24, 26, 25, 26]}, index=Index( + ['xbcde', np.nan, 'zbcde', 'ybcde'], name='a2')) + + result = df.xs('z', level='a1') + tm.assert_frame_equal(result, expected) + + +def test_xs_with_duplicates(multiindex_dataframe_random_data): + # Issue #13719 + frame = multiindex_dataframe_random_data + df_dup = concat([frame] * 2) + assert df_dup.index.is_unique is False + expected = concat([frame.xs('one', level='second')] * 2) + tm.assert_frame_equal(df_dup.xs('one', level='second'), expected) + tm.assert_frame_equal(df_dup.xs(['one'], level=['second']), expected) + + +def test_xs_level(multiindex_dataframe_random_data): + frame = multiindex_dataframe_random_data + result = frame.xs('two', level='second') + expected = frame[frame.index.get_level_values(1) == 'two'] + expected.index = expected.index.droplevel(1) + + tm.assert_frame_equal(result, expected) + + index = MultiIndex.from_tuples([('x', 'y', 'z'), ('a', 'b', 'c'), ( + 'p', 'q', 'r')]) + df = DataFrame(np.random.randn(3, 5), index=index) + result = df.xs('c', level=2) + expected = df[1:2] + expected.index = expected.index.droplevel(2) + tm.assert_frame_equal(result, expected) + + # this is a copy in 0.14 + result = frame.xs('two', level='second') + + # setting this will give a SettingWithCopyError + # as we are trying to write a view + def f(x): + x[:] = 10 + + pytest.raises(com.SettingWithCopyError, f, result) + + +def test_xs_level_multiple(): + text = """ A B C D E one two three four a b 10.0032 5 -0.5109 -2.3358 -0.4645 0.05076 0.3640 a q 20 4 0.4473 1.4152 0.2834 1.00661 0.1744 x q 30 3 -0.6662 -0.5243 -0.3580 0.89145 2.5838""" - df = read_csv(StringIO(text), sep=r'\s+', engine='python') + df = read_csv(StringIO(text), sep=r'\s+', engine='python') - result = df.xs(('a', 4), level=['one', 'four']) - expected = df.xs('a').xs(4, level='four') - tm.assert_frame_equal(result, expected) + result = df.xs(('a', 4), level=['one', 'four']) + expected = df.xs('a').xs(4, level='four') + tm.assert_frame_equal(result, expected) - # this is a copy in 0.14 - result = df.xs(('a', 4), level=['one', 'four']) + # this is a copy in 0.14 + result = df.xs(('a', 4), level=['one', 'four']) - # setting this will give a SettingWithCopyError - # as we are trying to write a view - def f(x): - x[:] = 10 + # setting this will give a SettingWithCopyError + # as we are trying to write a view + def f(x): + x[:] = 10 - pytest.raises(com.SettingWithCopyError, f, result) + pytest.raises(com.SettingWithCopyError, f, result) - # GH2107 - dates = lrange(20111201, 20111205) - ids = 'abcde' - idx = MultiIndex.from_tuples([x for x in cart_product(dates, ids)]) - idx.names = ['date', 'secid'] - df = DataFrame(np.random.randn(len(idx), 3), idx, ['X', 'Y', 'Z']) + # GH2107 + dates = lrange(20111201, 20111205) + ids = 'abcde' + idx = MultiIndex.from_tuples([x for x in cart_product(dates, ids)]) + idx.names = ['date', 'secid'] + df = DataFrame(np.random.randn(len(idx), 3), idx, ['X', 'Y', 'Z']) - rs = df.xs(20111201, level='date') - xp = df.loc[20111201, :] - tm.assert_frame_equal(rs, xp) + rs = df.xs(20111201, level='date') + xp = df.loc[20111201, :] + tm.assert_frame_equal(rs, xp) - def test_xs_level0(self): - text = """ A B C D E + +def test_xs_level0(): + text = """ A B C D E one two three four a b 10.0032 5 -0.5109 -2.3358 -0.4645 0.05076 0.3640 a q 20 4 0.4473 1.4152 0.2834 1.00661 0.1744 x q 30 3 -0.6662 -0.5243 -0.3580 0.89145 2.5838""" - df = read_csv(StringIO(text), sep=r'\s+', engine='python') + df = read_csv(StringIO(text), sep=r'\s+', engine='python') + + result = df.xs('a', level=0) + expected = df.xs('a') + assert len(result) == 2 + tm.assert_frame_equal(result, expected) - result = df.xs('a', level=0) - expected = df.xs('a') - assert len(result) == 2 - tm.assert_frame_equal(result, expected) - def test_xs_level_series(self, multiindex_dataframe_random_data, - multiindex_year_month_day_dataframe_random_data): - frame = multiindex_dataframe_random_data - ymd = multiindex_year_month_day_dataframe_random_data - s = frame['A'] - result = s[:, 'two'] - expected = frame.xs('two', level=1)['A'] - tm.assert_series_equal(result, expected) +def test_xs_level_series(multiindex_dataframe_random_data, + multiindex_year_month_day_dataframe_random_data): + frame = multiindex_dataframe_random_data + ymd = multiindex_year_month_day_dataframe_random_data + s = frame['A'] + result = s[:, 'two'] + expected = frame.xs('two', level=1)['A'] + tm.assert_series_equal(result, expected) - s = ymd['A'] - result = s[2000, 5] - expected = ymd.loc[2000, 5]['A'] - tm.assert_series_equal(result, expected) + s = ymd['A'] + result = s[2000, 5] + expected = ymd.loc[2000, 5]['A'] + tm.assert_series_equal(result, expected) - # not implementing this for now + # not implementing this for now - pytest.raises(TypeError, s.__getitem__, (2000, slice(3, 4))) + pytest.raises(TypeError, s.__getitem__, (2000, slice(3, 4))) - # result = s[2000, 3:4] - # lv =s.index.get_level_values(1) - # expected = s[(lv == 3) | (lv == 4)] - # expected.index = expected.index.droplevel(0) - # tm.assert_series_equal(result, expected) + # result = s[2000, 3:4] + # lv =s.index.get_level_values(1) + # expected = s[(lv == 3) | (lv == 4)] + # expected.index = expected.index.droplevel(0) + # tm.assert_series_equal(result, expected) - # can do this though + # can do this though