diff --git a/pandas/core/generic.py b/pandas/core/generic.py index a893b2ba1a189..6e0a92a3cd93a 100644 --- a/pandas/core/generic.py +++ b/pandas/core/generic.py @@ -7522,7 +7522,7 @@ def _add_numeric_operations(cls): cls.any = _make_logical_function( cls, 'any', name, name2, axis_descr, - 'Return whether any element is True over requested axis', + 'Return whether any element is True over requested axis.', nanops.nanany) cls.all = _make_logical_function( cls, 'all', name, name2, axis_descr, @@ -7784,25 +7784,41 @@ def _doc_parms(cls): %(outname)s : %(name1)s or %(name2)s (if level specified)\n""" _bool_doc = """ - %(desc)s +Returns True if one (or more) elements are non-zero, +not-empty or not-False. + Parameters ---------- axis : %(axis_descr)s skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result - will be NA + will be NA. level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a - particular level, collapsing into a %(name1)s + particular level, collapsing into a %(name1)s. bool_only : boolean, default None Include only boolean columns. If None, will attempt to use everything, then use only boolean data. Not implemented for Series. +**kwargs : Additional keywords have no effect but might be accepted for + compatibility with numpy. Returns ------- -%(outname)s : %(name1)s or %(name2)s (if level specified)\n""" +%(outname)s : %(name1)s or %(name2)s (if level specified) + +Examples +-------- +>>> s1 = pd.Series([1, 2, 3]) +>>> s1.any() +True + +>>> import numpy as np +>>> s2 = pd.Series([np.NaN, np.NaN, np.NaN]) +>>> s2.any() +False +""" _cnum_doc = """