You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
~\AppData\Roaming\Python\Python37\site-packages\scipy\linalg\basic.py in inv(a, overwrite_a, check_finite)
944
945 """
--> 946 a1 = _asarray_validated(a, check_finite=check_finite)
947 if len(a1.shape) != 2 or a1.shape[0] != a1.shape[1]:
948 raise ValueError('expected square matrix')
~\AppData\Roaming\Python\Python37\site-packages\scipy_lib_util.py in _asarray_validated(a, check_finite, sparse_ok, objects_ok, mask_ok, as_inexact)
236 raise ValueError('masked arrays are not supported')
237 toarray = np.asarray_chkfinite if check_finite else np.asarray
--> 238 a = toarray(a)
239 if not objects_ok:
240 if a.dtype is np.dtype('O'):
~\AppData\Roaming\Python\Python37\site-packages\numpy\lib\function_base.py in asarray_chkfinite(a, dtype, order)
459 if a.dtype.char in typecodes['AllFloat'] and not np.isfinite(a).all():
460 raise ValueError(
--> 461 "array must not contain infs or NaNs")
462 return a
463
ValueError: array must not contain infs or NaNs
Problem description
As far as I'm aware this issue has been raised before (#14821) and fixed but I seem to have found another example of it. Plots an empty plot.
Code Sample
plt.figure(figsize = (10,12))
for i, source in enumerate(['EXT_SOURCE_1','EXT_SOURCE_2','EXT_SOURCE_3']):
# create subplot for each source
plt.subplot(3, 1, i+1)
sns.kdeplot(train.loc[train['TARGET'] == 0, source], label = 'target == 0')
sns.kdeplot(train.loc[train['TARGET'] == 1, source], label = 'target == 1')
plt.tight_layout(h_pad = 2.5)
ValueError Traceback (most recent call last)
in ()
10 # create subplot for each source
11 plt.subplot(3, 1, i+1)
---> 12 sns.kdeplot(train.loc[train['TARGET'] == 0, source], label = 'target == 0')
13 sns.kdeplot(train.loc[train['TARGET'] == 1, source], label = 'target == 1')
14
~\AppData\Roaming\Python\Python37\site-packages\seaborn\distributions.py in kdeplot(data, data2, shade, vertical, kernel, bw, gridsize, cut, clip, legend, cumulative, shade_lowest, cbar, cbar_ax, cbar_kws, ax, **kwargs)
689 ax = _univariate_kdeplot(data, shade, vertical, kernel, bw,
690 gridsize, cut, clip, legend, ax,
--> 691 cumulative=cumulative, **kwargs)
692
693 return ax
~\AppData\Roaming\Python\Python37\site-packages\seaborn\distributions.py in _univariate_kdeplot(data, shade, vertical, kernel, bw, gridsize, cut, clip, legend, ax, cumulative, **kwargs)
292 "only implemented in statsmodels."
293 "Please install statsmodels.")
--> 294 x, y = _scipy_univariate_kde(data, bw, gridsize, cut, clip)
295
296 # Make sure the density is nonnegative
~\AppData\Roaming\Python\Python37\site-packages\seaborn\distributions.py in _scipy_univariate_kde(data, bw, gridsize, cut, clip)
364 """Compute a univariate kernel density estimate using scipy."""
365 try:
--> 366 kde = stats.gaussian_kde(data, bw_method=bw)
367 except TypeError:
368 kde = stats.gaussian_kde(data)
~\AppData\Roaming\Python\Python37\site-packages\scipy\stats\kde.py in init(self, dataset, bw_method)
170
171 self.d, self.n = self.dataset.shape
--> 172 self.set_bandwidth(bw_method=bw_method)
173
174 def evaluate(self, points):
~\AppData\Roaming\Python\Python37\site-packages\scipy\stats\kde.py in set_bandwidth(self, bw_method)
497 raise ValueError(msg)
498
--> 499 self._compute_covariance()
500
501 def _compute_covariance(self):
~\AppData\Roaming\Python\Python37\site-packages\scipy\stats\kde.py in _compute_covariance(self)
508 self._data_covariance = atleast_2d(np.cov(self.dataset, rowvar=1,
509 bias=False))
--> 510 self._data_inv_cov = linalg.inv(self._data_covariance)
511
512 self.covariance = self._data_covariance * self.factor**2
~\AppData\Roaming\Python\Python37\site-packages\scipy\linalg\basic.py in inv(a, overwrite_a, check_finite)
944
945 """
--> 946 a1 = _asarray_validated(a, check_finite=check_finite)
947 if len(a1.shape) != 2 or a1.shape[0] != a1.shape[1]:
948 raise ValueError('expected square matrix')
~\AppData\Roaming\Python\Python37\site-packages\scipy_lib_util.py in _asarray_validated(a, check_finite, sparse_ok, objects_ok, mask_ok, as_inexact)
236 raise ValueError('masked arrays are not supported')
237 toarray = np.asarray_chkfinite if check_finite else np.asarray
--> 238 a = toarray(a)
239 if not objects_ok:
240 if a.dtype is np.dtype('O'):
~\AppData\Roaming\Python\Python37\site-packages\numpy\lib\function_base.py in asarray_chkfinite(a, dtype, order)
459 if a.dtype.char in typecodes['AllFloat'] and not np.isfinite(a).all():
460 raise ValueError(
--> 461 "array must not contain infs or NaNs")
462 return a
463
ValueError: array must not contain infs or NaNs
Problem description
As far as I'm aware this issue has been raised before (#14821) and fixed but I seem to have found another example of it. Plots an empty plot.
train dataframe is 'application_test.csv' from https://www.kaggle.com/c/home-credit-default-risk/download/application_test.csv
Couldn't replicate with an example easy, example in #14821 will plot.
Expected Output
Like #14821, issue is resolved by using dropna().
Output of
pd.show_versions()
INSTALLED VERSIONS
commit: None
python: 3.7.0.final.0
python-bits: 64
OS: Windows
OS-release: 10
machine: AMD64
processor: Intel64 Family 6 Model 42 Stepping 7, GenuineIntel
byteorder: little
LC_ALL: None
LANG: None
LOCALE: None.None
pandas: 0.23.4
pytest: None
pip: 18.0
setuptools: 39.0.1
Cython: None
numpy: 1.15.1
scipy: 1.1.0
pyarrow: None
xarray: None
IPython: 6.5.0
sphinx: None
patsy: None
dateutil: 2.7.3
pytz: 2018.5
blosc: None
bottleneck: None
tables: None
numexpr: None
feather: None
matplotlib: 2.2.3
openpyxl: None
xlrd: None
xlwt: None
xlsxwriter: None
lxml: None
bs4: None
html5lib: 1.0.1
sqlalchemy: None
pymysql: None
psycopg2: None
jinja2: 2.10
s3fs: None
fastparquet: None
pandas_gbq: None
pandas_datareader: None
The text was updated successfully, but these errors were encountered: