|
| 1 | +# -*- coding: utf-8 -*- |
| 2 | + |
| 3 | +import pytest |
| 4 | + |
| 5 | +import numpy as np |
| 6 | +from pandas import Series, DataFrame |
| 7 | + |
| 8 | +from pandas.util.testing import assert_series_equal, assert_frame_equal |
| 9 | +import pandas.util.testing as tm |
| 10 | + |
| 11 | + |
| 12 | +class TestDataFrameDuplicated(object): |
| 13 | + |
| 14 | + def test_duplicated_keep(self): |
| 15 | + df = DataFrame({'A': [0, 1, 1, 2, 0], 'B': ['a', 'b', 'b', 'c', 'a']}) |
| 16 | + |
| 17 | + # keep = 'first' |
| 18 | + exp = Series([False, False, True, False, True]) |
| 19 | + assert_series_equal(df.duplicated(keep='first'), exp) |
| 20 | + |
| 21 | + # keep = 'last' |
| 22 | + exp = Series([True, True, False, False, False]) |
| 23 | + assert_series_equal(df.duplicated(keep='last'), exp) |
| 24 | + |
| 25 | + # keep = False |
| 26 | + exp = Series([True, True, True, False, True]) |
| 27 | + assert_series_equal(df.duplicated(keep=False), exp) |
| 28 | + |
| 29 | + def test_duplicated_nan_none(self): |
| 30 | + # np.nan and None are considered equal |
| 31 | + df = DataFrame({'C': [np.nan, 3, 3, None, np.nan]}, dtype=object) |
| 32 | + |
| 33 | + # keep = 'first' |
| 34 | + exp = Series([False, False, True, True, True]) |
| 35 | + assert_series_equal(df.duplicated(keep='first'), exp) |
| 36 | + |
| 37 | + # keep = 'last' |
| 38 | + exp = Series([True, True, False, True, False]) |
| 39 | + assert_series_equal(df.duplicated(keep='last'), exp) |
| 40 | + |
| 41 | + # keep = False |
| 42 | + exp = Series([True] * 5) |
| 43 | + assert_series_equal(df.duplicated(keep=False), exp) |
| 44 | + |
| 45 | + @pytest.mark.parametrize('keep', ['first', 'last', False]) |
| 46 | + @pytest.mark.parametrize('subset', [None, ['A', 'B'], 'A']) |
| 47 | + def test_duplicated_subset(self, subset, keep): |
| 48 | + df = DataFrame({'A': [0, 1, 1, 2, 0], |
| 49 | + 'B': ['a', 'b', 'b', 'c', 'a'], |
| 50 | + 'C': [np.nan, 3, 3, None, np.nan]}) |
| 51 | + |
| 52 | + if subset is None: |
| 53 | + subset = list(df.columns) |
| 54 | + |
| 55 | + exp = df[subset].duplicated(keep=keep).rename(name=None) |
| 56 | + assert_series_equal(df.duplicated(keep=keep, subset=subset), exp) |
| 57 | + |
| 58 | + def test_duplicated_inverse(self): |
| 59 | + # check that return_inverse kwarg does not affect outcome; |
| 60 | + # index of inverse must be correctly transformed as well |
| 61 | + idx = [1, 4, 9, 16, 25] |
| 62 | + df = DataFrame({'A': [0, 1, 1, 2, 0], 'B': ['a', 'b', 'b', 'c', 'a']}, |
| 63 | + index=idx) |
| 64 | + |
| 65 | + # keep = 'first' |
| 66 | + exp_isdup = df.duplicated(keep='first') |
| 67 | + exp_inv = Series([1, 4, 4, 16, 1], index=idx) |
| 68 | + tst_isdup, tst_inv = df.duplicated(keep='first', return_inverse=True) |
| 69 | + assert_series_equal(tst_isdup, exp_isdup) |
| 70 | + assert_series_equal(tst_inv, exp_inv) |
| 71 | + unique = df.loc[~exp_isdup] |
| 72 | + reconstr = unique.reindex(tst_inv.values).set_index(tst_inv.index) |
| 73 | + assert_frame_equal(reconstr, df) |
| 74 | + |
| 75 | + # keep = 'last' |
| 76 | + exp_isdup = df.duplicated(keep='last') |
| 77 | + exp_inv = Series([25, 9, 9, 16, 25], index=idx) |
| 78 | + tst_isdup, tst_inv = df.duplicated(keep='last', return_inverse=True) |
| 79 | + assert_series_equal(tst_isdup, exp_isdup) |
| 80 | + assert_series_equal(tst_inv, exp_inv) |
| 81 | + unique = df.loc[~exp_isdup] |
| 82 | + reconstr = unique.reindex(tst_inv.values).set_index(tst_inv.index) |
| 83 | + assert_frame_equal(reconstr, df) |
| 84 | + |
| 85 | + # keep = False |
| 86 | + rgx = 'The parameters return_inverse=True and keep=False cannot be.*' |
| 87 | + with tm.assert_raises_regex(ValueError, rgx): |
| 88 | + df.duplicated(keep=False, return_inverse=True) |
| 89 | + |
| 90 | + @pytest.mark.parametrize('keep', ['first', 'last']) |
| 91 | + @pytest.mark.parametrize('subset', [None, ['A', 'B'], 'A']) |
| 92 | + def test_duplicated_inverse_large(self, subset, keep): |
| 93 | + # unsorted index important to check 'first'/'last' functionality |
| 94 | + df = DataFrame(np.random.randint(0, 10, (10000, 3)), |
| 95 | + columns=list('ABC')).sample(5000) |
| 96 | + |
| 97 | + exp_isdup = df.duplicated(keep=keep, subset=subset) |
| 98 | + tst_isdup, inv = df.duplicated(keep=keep, subset=subset, |
| 99 | + return_inverse=True) |
| 100 | + assert_series_equal(tst_isdup, exp_isdup) |
| 101 | + |
| 102 | + # reconstruction can only succeed if all columns are taken into account |
| 103 | + if subset is None: |
| 104 | + unique = df.loc[~exp_isdup] |
| 105 | + reconstr = unique.reindex(inv.values).set_index(inv.index) |
| 106 | + assert_frame_equal(reconstr, df) |
0 commit comments