Skip to content

Commit dfd0448

Browse files
committed
Revert "DEPR: Correct frame.quantile tests to specify numeric_only"
This reverts commit 48ccac6.
1 parent 32d6f16 commit dfd0448

File tree

1 file changed

+46
-48
lines changed

1 file changed

+46
-48
lines changed

pandas/tests/frame/methods/test_quantile.py

+46-48
Original file line numberDiff line numberDiff line change
@@ -48,40 +48,41 @@ def test_numeric_only_default_false_warning(self):
4848
def test_quantile_sparse(self, df, expected):
4949
# GH#17198
5050
# GH#24600
51-
result = df.quantile(numeric_only=True)
51+
result = df.quantile()
5252

5353
tm.assert_series_equal(result, expected)
5454

55+
@pytest.mark.filterwarnings("ignore:In future versions of pandas, numeric_only")
5556
def test_quantile(self, datetime_frame):
5657
from numpy import percentile
5758

5859
df = datetime_frame
59-
q = df.quantile(0.1, axis=0, numeric_only=True)
60+
q = df.quantile(0.1, axis=0)
6061
assert q["A"] == percentile(df["A"], 10)
6162
tm.assert_index_equal(q.index, df.columns)
6263

63-
q = df.quantile(0.9, axis=1, numeric_only=True)
64+
q = df.quantile(0.9, axis=1)
6465
assert q["2000-01-17"] == percentile(df.loc["2000-01-17"], 90)
6566
tm.assert_index_equal(q.index, df.index)
6667

6768
# test degenerate case
68-
q = DataFrame({"x": [], "y": []}).quantile(0.1, numeric_only=True, axis=0)
69+
q = DataFrame({"x": [], "y": []}).quantile(0.1, axis=0)
6970
assert np.isnan(q["x"]) and np.isnan(q["y"])
7071

7172
# non-numeric exclusion
7273
df = DataFrame({"col1": ["A", "A", "B", "B"], "col2": [1, 2, 3, 4]})
73-
rs = df.quantile(0.5, numeric_only=True)
74+
rs = df.quantile(0.5)
7475
with tm.assert_produces_warning(FutureWarning, match="Select only valid"):
7576
xp = df.median().rename(0.5)
7677
tm.assert_series_equal(rs, xp)
7778

7879
# axis
7980
df = DataFrame({"A": [1, 2, 3], "B": [2, 3, 4]}, index=[1, 2, 3])
80-
result = df.quantile(0.5, axis=1, numeric_only=True)
81+
result = df.quantile(0.5, axis=1)
8182
expected = Series([1.5, 2.5, 3.5], index=[1, 2, 3], name=0.5)
8283
tm.assert_series_equal(result, expected)
8384

84-
result = df.quantile([0.5, 0.75], numeric_only=True, axis=1)
85+
result = df.quantile([0.5, 0.75], axis=1)
8586
expected = DataFrame(
8687
{1: [1.5, 1.75], 2: [2.5, 2.75], 3: [3.5, 3.75]}, index=[0.5, 0.75]
8788
)
@@ -91,7 +92,7 @@ def test_quantile(self, datetime_frame):
9192
# so that we exclude non-numeric along the same axis
9293
# See GH #7312
9394
df = DataFrame([[1, 2, 3], ["a", "b", 4]])
94-
result = df.quantile(0.5, numeric_only=True, axis=1)
95+
result = df.quantile(0.5, axis=1)
9596
expected = Series([3.0, 4.0], index=[0, 1], name=0.5)
9697
tm.assert_series_equal(result, expected)
9798

@@ -120,7 +121,7 @@ def test_quantile_axis_mixed(self):
120121
"D": ["foo", "bar", "baz"],
121122
}
122123
)
123-
result = df.quantile(0.5, numeric_only=True, axis=1)
124+
result = df.quantile(0.5, axis=1)
124125
expected = Series([1.5, 2.5, 3.5], name=0.5)
125126
tm.assert_series_equal(result, expected)
126127

@@ -134,35 +135,36 @@ def test_quantile_axis_parameter(self):
134135

135136
df = DataFrame({"A": [1, 2, 3], "B": [2, 3, 4]}, index=[1, 2, 3])
136137

137-
result = df.quantile(0.5, axis=0, numeric_only=True)
138+
result = df.quantile(0.5, axis=0)
138139

139140
expected = Series([2.0, 3.0], index=["A", "B"], name=0.5)
140141
tm.assert_series_equal(result, expected)
141142

142-
expected = df.quantile(0.5, axis="index", numeric_only=True)
143+
expected = df.quantile(0.5, axis="index")
143144
tm.assert_series_equal(result, expected)
144145

145-
result = df.quantile(0.5, axis=1, numeric_only=True)
146+
result = df.quantile(0.5, axis=1)
146147

147148
expected = Series([1.5, 2.5, 3.5], index=[1, 2, 3], name=0.5)
148149
tm.assert_series_equal(result, expected)
149150

150-
result = df.quantile(0.5, axis="columns", numeric_only=True)
151+
result = df.quantile(0.5, axis="columns")
151152
tm.assert_series_equal(result, expected)
152153

153154
msg = "No axis named -1 for object type DataFrame"
154155
with pytest.raises(ValueError, match=msg):
155-
df.quantile(0.1, axis=-1, numeric_only=True)
156+
df.quantile(0.1, axis=-1)
156157
msg = "No axis named column for object type DataFrame"
157158
with pytest.raises(ValueError, match=msg):
158-
df.quantile(0.1, axis="column", numeric_only=True)
159+
df.quantile(0.1, axis="column")
159160

161+
@pytest.mark.filterwarnings("ignore:In future versions of pandas, numeric_only")
160162
def test_quantile_interpolation(self):
161163
# see gh-10174
162164

163165
# interpolation method other than default linear
164166
df = DataFrame({"A": [1, 2, 3], "B": [2, 3, 4]}, index=[1, 2, 3])
165-
result = df.quantile(0.5, axis=1, numeric_only=True, interpolation="nearest")
167+
result = df.quantile(0.5, axis=1, interpolation="nearest")
166168
expected = Series([1, 2, 3], index=[1, 2, 3], name=0.5)
167169
tm.assert_series_equal(result, expected)
168170

@@ -178,7 +180,7 @@ def test_quantile_interpolation(self):
178180

179181
# float
180182
df = DataFrame({"A": [1.0, 2.0, 3.0], "B": [2.0, 3.0, 4.0]}, index=[1, 2, 3])
181-
result = df.quantile(0.5, axis=1, numeric_only=True, interpolation="nearest")
183+
result = df.quantile(0.5, axis=1, interpolation="nearest")
182184
expected = Series([1.0, 2.0, 3.0], index=[1, 2, 3], name=0.5)
183185
tm.assert_series_equal(result, expected)
184186
exp = np.percentile(
@@ -191,22 +193,20 @@ def test_quantile_interpolation(self):
191193
tm.assert_series_equal(result, expected)
192194

193195
# axis
194-
result = df.quantile(
195-
[0.5, 0.75], axis=1, numeric_only=True, interpolation="lower"
196-
)
196+
result = df.quantile([0.5, 0.75], axis=1, interpolation="lower")
197197
expected = DataFrame(
198198
{1: [1.0, 1.0], 2: [2.0, 2.0], 3: [3.0, 3.0]}, index=[0.5, 0.75]
199199
)
200200
tm.assert_frame_equal(result, expected)
201201

202202
# test degenerate case
203203
df = DataFrame({"x": [], "y": []})
204-
q = df.quantile(0.1, axis=0, numeric_only=True, interpolation="higher")
204+
q = df.quantile(0.1, axis=0, interpolation="higher")
205205
assert np.isnan(q["x"]) and np.isnan(q["y"])
206206

207207
# multi
208208
df = DataFrame([[1, 1, 1], [2, 2, 2], [3, 3, 3]], columns=["a", "b", "c"])
209-
result = df.quantile([0.25, 0.5], numeric_only=True, interpolation="midpoint")
209+
result = df.quantile([0.25, 0.5], interpolation="midpoint")
210210

211211
# https://github.com/numpy/numpy/issues/7163
212212
expected = DataFrame(
@@ -221,25 +221,25 @@ def test_quantile_interpolation_datetime(self, datetime_frame):
221221

222222
# interpolation = linear (default case)
223223
df = datetime_frame
224-
q = df.quantile(0.1, axis=0, numeric_only=True, interpolation="linear")
224+
q = df.quantile(0.1, axis=0, interpolation="linear")
225225
assert q["A"] == np.percentile(df["A"], 10)
226226

227227
def test_quantile_interpolation_int(self, int_frame):
228228
# see gh-10174
229229

230230
df = int_frame
231231
# interpolation = linear (default case)
232-
q = df.quantile(0.1, numeric_only=True)
232+
q = df.quantile(0.1)
233233
assert q["A"] == np.percentile(df["A"], 10)
234234

235235
# test with and without interpolation keyword
236-
q1 = df.quantile(0.1, axis=0, numeric_only=True, interpolation="linear")
236+
q1 = df.quantile(0.1, axis=0, interpolation="linear")
237237
assert q1["A"] == np.percentile(df["A"], 10)
238238
tm.assert_series_equal(q, q1)
239239

240240
def test_quantile_multi(self):
241241
df = DataFrame([[1, 1, 1], [2, 2, 2], [3, 3, 3]], columns=["a", "b", "c"])
242-
result = df.quantile([0.25, 0.5], numeric_only=True)
242+
result = df.quantile([0.25, 0.5])
243243
expected = DataFrame(
244244
[[1.5, 1.5, 1.5], [2.0, 2.0, 2.0]],
245245
index=[0.25, 0.5],
@@ -248,15 +248,13 @@ def test_quantile_multi(self):
248248
tm.assert_frame_equal(result, expected)
249249

250250
# axis = 1
251-
result = df.quantile([0.25, 0.5], numeric_only=True, axis=1)
251+
result = df.quantile([0.25, 0.5], axis=1)
252252
expected = DataFrame(
253253
[[1.5, 1.5, 1.5], [2.0, 2.0, 2.0]], index=[0.25, 0.5], columns=[0, 1, 2]
254254
)
255255

256256
# empty
257-
result = DataFrame({"x": [], "y": []}).quantile(
258-
[0.1, 0.9], axis=0, numeric_only=True
259-
)
257+
result = DataFrame({"x": [], "y": []}).quantile([0.1, 0.9], axis=0)
260258
expected = DataFrame(
261259
{"x": [np.nan, np.nan], "y": [np.nan, np.nan]}, index=[0.1, 0.9]
262260
)
@@ -266,7 +264,7 @@ def test_quantile_datetime(self):
266264
df = DataFrame({"a": pd.to_datetime(["2010", "2011"]), "b": [0, 5]})
267265

268266
# exclude datetime
269-
result = df.quantile(0.5, numeric_only=True)
267+
result = df.quantile(0.5)
270268
expected = Series([2.5], index=["b"])
271269

272270
# datetime
@@ -302,11 +300,11 @@ def test_quantile_datetime(self):
302300
tm.assert_frame_equal(result, expected)
303301

304302
# empty when numeric_only=True
305-
result = df[["a", "c"]].quantile(0.5, numeric_only=True)
303+
result = df[["a", "c"]].quantile(0.5)
306304
expected = Series([], index=[], dtype=np.float64, name=0.5)
307305
tm.assert_series_equal(result, expected)
308306

309-
result = df[["a", "c"]].quantile([0.5], numeric_only=True)
307+
result = df[["a", "c"]].quantile([0.5])
310308
expected = DataFrame(index=[0.5])
311309
tm.assert_frame_equal(result, expected)
312310

@@ -467,30 +465,30 @@ def test_quantile_nan(self):
467465
df = DataFrame({"a": np.arange(1, 6.0), "b": np.arange(1, 6.0)})
468466
df.iloc[-1, 1] = np.nan
469467

470-
res = df.quantile(0.5, numeric_only=True)
468+
res = df.quantile(0.5)
471469
exp = Series([3.0, 2.5], index=["a", "b"], name=0.5)
472470
tm.assert_series_equal(res, exp)
473471

474-
res = df.quantile([0.5, 0.75], numeric_only=True)
472+
res = df.quantile([0.5, 0.75])
475473
exp = DataFrame({"a": [3.0, 4.0], "b": [2.5, 3.25]}, index=[0.5, 0.75])
476474
tm.assert_frame_equal(res, exp)
477475

478-
res = df.quantile(0.5, axis=1, numeric_only=True)
476+
res = df.quantile(0.5, axis=1)
479477
exp = Series(np.arange(1.0, 6.0), name=0.5)
480478
tm.assert_series_equal(res, exp)
481479

482-
res = df.quantile([0.5, 0.75], axis=1, numeric_only=True)
480+
res = df.quantile([0.5, 0.75], axis=1)
483481
exp = DataFrame([np.arange(1.0, 6.0)] * 2, index=[0.5, 0.75])
484482
tm.assert_frame_equal(res, exp)
485483

486484
# full-nan column
487485
df["b"] = np.nan
488486

489-
res = df.quantile(0.5, numeric_only=True)
487+
res = df.quantile(0.5)
490488
exp = Series([3.0, np.nan], index=["a", "b"], name=0.5)
491489
tm.assert_series_equal(res, exp)
492490

493-
res = df.quantile([0.5, 0.75], numeric_only=True)
491+
res = df.quantile([0.5, 0.75])
494492
exp = DataFrame({"a": [3.0, 4.0], "b": [np.nan, np.nan]}, index=[0.5, 0.75])
495493
tm.assert_frame_equal(res, exp)
496494

@@ -534,27 +532,27 @@ def test_quantile_empty_no_rows_floats(self):
534532
# floats
535533
df = DataFrame(columns=["a", "b"], dtype="float64")
536534

537-
res = df.quantile(0.5, numeric_only=True)
535+
res = df.quantile(0.5)
538536
exp = Series([np.nan, np.nan], index=["a", "b"], name=0.5)
539537
tm.assert_series_equal(res, exp)
540538

541-
res = df.quantile([0.5], numeric_only=True)
539+
res = df.quantile([0.5])
542540
exp = DataFrame([[np.nan, np.nan]], columns=["a", "b"], index=[0.5])
543541
tm.assert_frame_equal(res, exp)
544542

545-
res = df.quantile(0.5, axis=1, numeric_only=True)
543+
res = df.quantile(0.5, axis=1)
546544
exp = Series([], index=[], dtype="float64", name=0.5)
547545
tm.assert_series_equal(res, exp)
548546

549-
res = df.quantile([0.5], axis=1, numeric_only=True)
547+
res = df.quantile([0.5], axis=1)
550548
exp = DataFrame(columns=[], index=[0.5])
551549
tm.assert_frame_equal(res, exp)
552550

553551
def test_quantile_empty_no_rows_ints(self):
554552
# ints
555553
df = DataFrame(columns=["a", "b"], dtype="int64")
556554

557-
res = df.quantile(0.5, numeric_only=True)
555+
res = df.quantile(0.5)
558556
exp = Series([np.nan, np.nan], index=["a", "b"], name=0.5)
559557
tm.assert_series_equal(res, exp)
560558

@@ -584,12 +582,12 @@ def test_quantile_empty_no_columns(self):
584582
# GH#23925 _get_numeric_data may drop all columns
585583
df = DataFrame(pd.date_range("1/1/18", periods=5))
586584
df.columns.name = "captain tightpants"
587-
result = df.quantile(0.5, numeric_only=True)
585+
result = df.quantile(0.5)
588586
expected = Series([], index=[], name=0.5, dtype=np.float64)
589587
expected.index.name = "captain tightpants"
590588
tm.assert_series_equal(result, expected)
591589

592-
result = df.quantile([0.5], numeric_only=True)
590+
result = df.quantile([0.5])
593591
expected = DataFrame([], index=[0.5], columns=[])
594592
expected.columns.name = "captain tightpants"
595593
tm.assert_frame_equal(result, expected)
@@ -740,7 +738,7 @@ def test_quantile_ea_scalar(self, obj, index):
740738
def test_empty_numeric(self, dtype, expected_data, expected_index, axis):
741739
# GH 14564
742740
df = DataFrame(columns=["a", "b"], dtype=dtype)
743-
result = df.quantile(0.5, axis=axis, numeric_only=True)
741+
result = df.quantile(0.5, axis=axis)
744742
expected = Series(
745743
expected_data, name=0.5, index=Index(expected_index), dtype="float64"
746744
)
@@ -780,7 +778,7 @@ def test_datelike_numeric_only(self, expected_data, expected_index, axis):
780778
"c": pd.to_datetime(["2011", "2012"]),
781779
}
782780
)
783-
result = df[["a", "c"]].quantile(0.5, axis=axis, numeric_only=True)
781+
result = df[["a", "c"]].quantile(0.5, axis=axis)
784782
expected = Series(
785783
expected_data, name=0.5, index=Index(expected_index), dtype=np.float64
786784
)

0 commit comments

Comments
 (0)