@@ -732,19 +732,9 @@ def test_to_string_truncate_multilevel(self):
732
732
733
733
def test_truncate_with_different_dtypes (self ):
734
734
735
- # 11594, 12045, 12211
735
+ # 11594, 12045
736
736
# when truncated the dtypes of the splits can differ
737
737
738
- # 12211
739
- df = DataFrame ({'date' : [pd .Timestamp ('20130101' ).tz_localize ('UTC' )] + [pd .NaT ]* 5 })
740
-
741
- with option_context ("display.max_rows" , 5 ):
742
- result = str (df )
743
- self .assertTrue ('2013-01-01 00:00:00+00:00' in result )
744
- self .assertTrue ('NaT' in result )
745
- self .assertTrue ('...' in result )
746
- self .assertTrue ('[6 rows x 1 columns]' in result )
747
-
748
738
# 11594
749
739
import datetime
750
740
s = Series ([datetime .datetime (2012 , 1 , 1 )]* 10 + [datetime .datetime (1012 ,1 ,2 )] + [datetime .datetime (2012 , 1 , 3 )]* 10 )
@@ -761,6 +751,58 @@ def test_truncate_with_different_dtypes(self):
761
751
self .assertTrue ('None' in result )
762
752
self .assertFalse ('NaN' in result )
763
753
754
+ def test_datetimelike_frame (self ):
755
+
756
+ # GH 12211
757
+ df = DataFrame ({'date' : [pd .Timestamp ('20130101' ).tz_localize ('UTC' )] + [pd .NaT ]* 5 })
758
+
759
+ with option_context ("display.max_rows" , 5 ):
760
+ result = str (df )
761
+ self .assertTrue ('2013-01-01 00:00:00+00:00' in result )
762
+ self .assertTrue ('NaT' in result )
763
+ self .assertTrue ('...' in result )
764
+ self .assertTrue ('[6 rows x 1 columns]' in result )
765
+
766
+ dts = [pd .Timestamp ('2011-01-01' , tz = 'US/Eastern' )] * 5 + [pd .NaT ] * 5
767
+ df = pd .DataFrame ({"dt" : dts ,
768
+ "x" : [1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 ]})
769
+ with option_context ('display.max_rows' , 5 ):
770
+ expected = (' dt x\n '
771
+ '0 2011-01-01 00:00:00-05:00 1\n '
772
+ '1 2011-01-01 00:00:00-05:00 2\n '
773
+ '.. ... ..\n '
774
+ '8 NaT 9\n '
775
+ '9 NaT 10\n \n '
776
+ '[10 rows x 2 columns]' )
777
+ self .assertEqual (repr (df ), expected )
778
+
779
+ dts = [pd .NaT ] * 5 + [pd .Timestamp ('2011-01-01' , tz = 'US/Eastern' )] * 5
780
+ df = pd .DataFrame ({"dt" : dts ,
781
+ "x" : [1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 ]})
782
+ with option_context ('display.max_rows' , 5 ):
783
+ expected = (' dt x\n '
784
+ '0 NaT 1\n '
785
+ '1 NaT 2\n '
786
+ '.. ... ..\n '
787
+ '8 2011-01-01 00:00:00-05:00 9\n '
788
+ '9 2011-01-01 00:00:00-05:00 10\n \n '
789
+ '[10 rows x 2 columns]' )
790
+ self .assertEqual (repr (df ), expected )
791
+
792
+ dts = ([pd .Timestamp ('2011-01-01' , tz = 'Asia/Tokyo' )] * 5 +
793
+ [pd .Timestamp ('2011-01-01' , tz = 'US/Eastern' )] * 5 )
794
+ df = pd .DataFrame ({"dt" : dts ,
795
+ "x" : [1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 ]})
796
+ with option_context ('display.max_rows' , 5 ):
797
+ expected = (' dt x\n '
798
+ '0 2011-01-01 00:00:00+09:00 1\n '
799
+ '1 2011-01-01 00:00:00+09:00 2\n '
800
+ '.. ... ..\n '
801
+ '8 2011-01-01 00:00:00-05:00 9\n '
802
+ '9 2011-01-01 00:00:00-05:00 10\n \n '
803
+ '[10 rows x 2 columns]' )
804
+ self .assertEqual (repr (df ), expected )
805
+
764
806
def test_to_html_with_col_space (self ):
765
807
def check_with_width (df , col_space ):
766
808
import re
0 commit comments