@@ -272,9 +272,6 @@ parse_dates : boolean or list of ints or names or list of lists or dict, default
272
272
273
273
.. note ::
274
274
A fast-path exists for iso8601-formatted dates.
275
- infer_datetime_format : boolean, default ``False ``
276
- If ``True `` and parse_dates is enabled for a column, attempt to infer the
277
- datetime format to speed up the processing.
278
275
keep_date_col : boolean, default ``False ``
279
276
If ``True `` and parse_dates specifies combining multiple columns then keep the
280
277
original columns.
@@ -916,12 +913,11 @@ an exception is raised, the next one is tried:
916
913
917
914
Note that performance-wise, you should try these methods of parsing dates in order:
918
915
919
- 1. Try to infer the format using ``infer_datetime_format=True `` (see section below).
920
916
921
- 2 . If you know the format, use ``pd.to_datetime() ``:
917
+ 1 . If you know the format, use ``pd.to_datetime() ``:
922
918
``date_parser=lambda x: pd.to_datetime(x, format=...) ``.
923
919
924
- 3 . If you have a really non-standard format, use a custom ``date_parser `` function.
920
+ 2 . If you have a really non-standard format, use a custom ``date_parser `` function.
925
921
For optimal performance, this should be vectorized, i.e., it should accept arrays
926
922
as arguments.
927
923
@@ -1651,7 +1647,6 @@ Options that are unsupported by the pyarrow engine which are not covered by the
1651
1647
* ``decimal ``
1652
1648
* ``iterator ``
1653
1649
* ``dayfirst ``
1654
- * ``infer_datetime_format ``
1655
1650
* ``verbose ``
1656
1651
* ``skipinitialspace ``
1657
1652
* ``low_memory ``
0 commit comments