|
3 | 3 | * License, v. 2.0. If a copy of the MPL was not distributed with this
|
4 | 4 | * file, You can obtain one at https://mozilla.org/MPL/2.0/.
|
5 | 5 | */
|
| 6 | +use std::ops::*; |
6 | 7 |
|
7 |
| -use godot_ffi as sys; |
8 |
| -use sys::{ffi_methods, GodotFfi}; |
| 8 | +use crate::builtin::math::*; |
| 9 | +use crate::builtin::real::Real; |
9 | 10 |
|
10 |
| -type Inner = glam::f32::Vec2; |
11 |
| -//type Inner = glam::f64::DVec2; |
| 11 | +impl_vector!(Vector2, crate::builtin::real::Vec2, Real, (x, y)); |
| 12 | +impl_float_vector!(Vector2, Real); |
| 13 | +impl_vector_from!(Vector2, Vector2i, Real, (x, y)); |
12 | 14 |
|
13 |
| -#[derive(Default, Copy, Clone, Debug, PartialEq)] |
14 |
| -#[repr(C)] |
15 |
| -pub struct Vector2 { |
16 |
| - inner: Inner, |
17 |
| -} |
| 15 | +type Inner = crate::builtin::real::Vec2; |
18 | 16 |
|
19 | 17 | impl Vector2 {
|
20 |
| - pub fn new(x: f32, y: f32) -> Self { |
21 |
| - Self { |
22 |
| - inner: Inner::new(x, y), |
| 18 | + |
| 19 | + /// Left unit vector. Represents the direction of left. |
| 20 | + pub const LEFT: Self = Self::new(-1.0, 0.0); |
| 21 | + |
| 22 | + /// Right unit vector. Represents the direction of right. |
| 23 | + pub const RIGHT: Self = Self::new(1.0, 0.0); |
| 24 | + |
| 25 | + /// Up unit vector. Y is down in 2D, so this vector points -Y. |
| 26 | + pub const UP: Self = Self::new(0.0, -1.0); |
| 27 | + |
| 28 | + /// Down unit vector. Y is down in 2D, so this vector points +Y. |
| 29 | + pub const DOWN: Self = Self::new(0.0, 1.0); |
| 30 | + |
| 31 | + pub fn abs(self) -> Self { |
| 32 | + Self(self.0.abs()) |
| 33 | + } |
| 34 | + |
| 35 | + pub fn angle(self) -> Real { |
| 36 | + self.y().atan2(self.x()) |
| 37 | + } |
| 38 | + |
| 39 | + pub fn angle_to(self, to: Self) -> Real { |
| 40 | + self.0.angle_between(to.0) |
| 41 | + } |
| 42 | + |
| 43 | + pub fn angle_to_point(self, to: Self) -> Real { |
| 44 | + (to - self).angle() |
| 45 | + } |
| 46 | + |
| 47 | + pub fn aspect(self) -> Real { |
| 48 | + self.x() / self.y() |
| 49 | + } |
| 50 | + |
| 51 | + pub fn bezier_derivative( |
| 52 | + self, |
| 53 | + control_1: Self, |
| 54 | + control_2: Self, |
| 55 | + end: Self, |
| 56 | + t: Real, |
| 57 | + ) -> Self { |
| 58 | + let x = bezier_derivative( |
| 59 | + self.x(), |
| 60 | + control_1.x(), |
| 61 | + control_2.x(), |
| 62 | + end.x(), |
| 63 | + t, |
| 64 | + ); |
| 65 | + let y = bezier_derivative( |
| 66 | + self.y(), |
| 67 | + control_1.y(), |
| 68 | + control_2.y(), |
| 69 | + end.y(), |
| 70 | + t, |
| 71 | + ); |
| 72 | + |
| 73 | + Self::new(x, y) |
| 74 | + } |
| 75 | + |
| 76 | + pub fn bezier_interpolate( |
| 77 | + self, |
| 78 | + control_1: Self, |
| 79 | + control_2: Self, |
| 80 | + end: Self, |
| 81 | + t: Real, |
| 82 | + ) -> Self { |
| 83 | + let x = bezier_interpolate( |
| 84 | + self.x(), |
| 85 | + control_1.x(), |
| 86 | + control_2.x(), |
| 87 | + end.x(), |
| 88 | + t, |
| 89 | + ); |
| 90 | + let y = bezier_interpolate( |
| 91 | + self.y(), |
| 92 | + control_1.y(), |
| 93 | + control_2.y(), |
| 94 | + end.y(), |
| 95 | + t, |
| 96 | + ); |
| 97 | + |
| 98 | + Self::new(x, y) |
| 99 | + } |
| 100 | + |
| 101 | + pub fn bounce(self, normal: Self) -> Self { |
| 102 | + -self.reflect(normal) |
| 103 | + } |
| 104 | + |
| 105 | + pub fn ceil(self) -> Self { |
| 106 | + Self(self.0.ceil()) |
| 107 | + } |
| 108 | + |
| 109 | + pub fn clamp(self, min: Self, max: Self) -> Self { |
| 110 | + Self(self.0.clamp(min.0, max.0)) |
| 111 | + } |
| 112 | + |
| 113 | + pub fn cross(self, with: Self) -> Real { |
| 114 | + self.0.perp_dot(with.0) |
| 115 | + } |
| 116 | + |
| 117 | + pub fn cubic_interpolate(self, b: Self, pre_a: Self, post_b: Self, weight: Real) -> Self { |
| 118 | + let x = cubic_interpolate( |
| 119 | + self.x(), |
| 120 | + b.x(), |
| 121 | + pre_a.x(), |
| 122 | + post_b.x(), |
| 123 | + weight, |
| 124 | + ); |
| 125 | + let y = cubic_interpolate( |
| 126 | + self.y(), |
| 127 | + b.y(), |
| 128 | + pre_a.y(), |
| 129 | + post_b.y(), |
| 130 | + weight, |
| 131 | + ); |
| 132 | + |
| 133 | + Self::new(x, y) |
| 134 | + } |
| 135 | + |
| 136 | + pub fn cubic_interpolate_in_time( |
| 137 | + self, |
| 138 | + b: Self, |
| 139 | + pre_a: Self, |
| 140 | + post_b: Self, |
| 141 | + weight: Real, |
| 142 | + b_t: Real, |
| 143 | + pre_a_t: Real, |
| 144 | + post_b_t: Real, |
| 145 | + ) -> Self { |
| 146 | + let x = cubic_interpolate_in_time( |
| 147 | + self.x(), |
| 148 | + b.x(), |
| 149 | + pre_a.x(), |
| 150 | + post_b.x(), |
| 151 | + weight, |
| 152 | + b_t, |
| 153 | + pre_a_t, |
| 154 | + post_b_t, |
| 155 | + ); |
| 156 | + let y = cubic_interpolate_in_time( |
| 157 | + self.y(), |
| 158 | + b.y(), |
| 159 | + pre_a.y(), |
| 160 | + post_b.y(), |
| 161 | + weight, |
| 162 | + b_t, |
| 163 | + pre_a_t, |
| 164 | + post_b_t, |
| 165 | + ); |
| 166 | + |
| 167 | + Self::new(x, y) |
| 168 | + } |
| 169 | + |
| 170 | + pub fn direction_to(self, to: Self) -> Self { |
| 171 | + (to - self).normalized() |
| 172 | + } |
| 173 | + |
| 174 | + pub fn distance_squared_to(self, to: Self) -> Real { |
| 175 | + self.0.distance_squared(to.0) |
| 176 | + } |
| 177 | + |
| 178 | + pub fn distance_to(self, to: Self) -> Real { |
| 179 | + self.0.distance(to.0) |
| 180 | + } |
| 181 | + |
| 182 | + pub fn dot(self, other: Self) -> Real { |
| 183 | + self.0.dot(other.0) |
| 184 | + } |
| 185 | + |
| 186 | + pub fn floor(self) -> Self { |
| 187 | + Self(self.0.floor()) |
| 188 | + } |
| 189 | + |
| 190 | + pub fn from_angle(angle: Real) -> Self { |
| 191 | + Self(Inner::from_angle(angle)) |
| 192 | + } |
| 193 | + |
| 194 | + pub fn is_equal_approx(self, to: Self) -> bool { |
| 195 | + is_equal_approx(self.x(), to.x()) && is_equal_approx(self.y(), to.y()) |
| 196 | + } |
| 197 | + |
| 198 | + pub fn is_finite(self) -> bool { |
| 199 | + self.0.is_finite() |
| 200 | + } |
| 201 | + |
| 202 | + pub fn is_normalized(self) -> bool { |
| 203 | + self.0.is_normalized() |
| 204 | + } |
| 205 | + |
| 206 | + pub fn is_zero_approx(self) -> bool { |
| 207 | + is_zero_approx(self.x()) && is_zero_approx(self.y()) |
| 208 | + } |
| 209 | + |
| 210 | + pub fn length_squared(self) -> Real { |
| 211 | + self.0.length_squared() |
| 212 | + } |
| 213 | + |
| 214 | + pub fn lerp(self, to: Self, weight: Real) -> Self { |
| 215 | + Self(self.0.lerp(to.0, weight)) |
| 216 | + } |
| 217 | + |
| 218 | + pub fn limit_length(self, length: Option<Real>) -> Self { |
| 219 | + Self(self.0.clamp_length_max(length.unwrap_or(1.0))) |
| 220 | + } |
| 221 | + |
| 222 | + pub fn max_axis_index(self) -> i32 { |
| 223 | + if self.0.max_element() == self.x() { |
| 224 | + 0 |
| 225 | + } else { |
| 226 | + 1 |
23 | 227 | }
|
24 | 228 | }
|
25 | 229 |
|
26 |
| - pub fn from_inner(inner: Inner) -> Self { |
27 |
| - Self { inner } |
| 230 | + pub fn min_axis_index(self) -> i32 { |
| 231 | + if self.0.min_element() == self.x() { |
| 232 | + 0 |
| 233 | + } else { |
| 234 | + 1 |
| 235 | + } |
28 | 236 | }
|
29 | 237 |
|
30 |
| - /// only for testing |
31 |
| - pub fn inner(self) -> Inner { |
32 |
| - self.inner |
| 238 | + pub fn move_toward(self, to: Self, delta: Real) -> Self { |
| 239 | + let vd = to - self; |
| 240 | + let len = vd.length(); |
| 241 | + if len <= delta || len < CMP_EPSILON { |
| 242 | + return to; |
| 243 | + } else { |
| 244 | + return self + vd / len * delta; |
| 245 | + }; |
33 | 246 | }
|
34 | 247 |
|
35 |
| - // Hacks for example |
36 |
| - // pub fn length(self) -> f32 { |
37 |
| - // self.inner.length() |
38 |
| - // } |
39 |
| - // pub fn normalized(self) -> Vector2 { |
40 |
| - // Self::from_inner(self.inner.normalize()) |
41 |
| - // } |
42 |
| - pub fn rotated(self, angle: f32) -> Self { |
43 |
| - Self::from_inner(glam::Affine2::from_angle(angle).transform_vector2(self.inner)) |
| 248 | + pub fn orthogonal(self) -> Self { |
| 249 | + Self::new(self.y(), -self.x()) |
44 | 250 | }
|
45 |
| -} |
46 | 251 |
|
47 |
| -impl GodotFfi for Vector2 { |
48 |
| - ffi_methods! { type sys::GDExtensionTypePtr = *mut Self; .. } |
49 |
| -} |
| 252 | + pub fn posmod(self, pmod: Real) -> Self { |
| 253 | + Self::new(fposmod(self.x(), pmod), fposmod(self.y(), pmod)) |
| 254 | + } |
50 | 255 |
|
51 |
| -impl std::fmt::Display for Vector2 { |
52 |
| - fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result { |
53 |
| - self.inner.fmt(f) |
| 256 | + pub fn posmodv(self, modv: Self) -> Self { |
| 257 | + Self::new( |
| 258 | + fposmod(self.x(), modv.x()), |
| 259 | + fposmod(self.y(), modv.y()), |
| 260 | + ) |
54 | 261 | }
|
55 |
| -} |
56 | 262 |
|
57 |
| -// ---------------------------------------------------------------------------------------------------------------------------------------------- |
| 263 | + pub fn project(self, b: Self) -> Self { |
| 264 | + Self(self.0.project_onto(b.0)) |
| 265 | + } |
58 | 266 |
|
59 |
| -type IInner = glam::IVec2; |
| 267 | + pub fn reflect(self, normal: Self) -> Self { |
| 268 | + Self(self.0.reject_from(normal.0)) |
| 269 | + } |
60 | 270 |
|
61 |
| -#[derive(Default, Copy, Clone, Debug, Eq, PartialEq)] |
62 |
| -#[repr(C)] |
63 |
| -pub struct Vector2i { |
64 |
| - inner: IInner, |
65 |
| -} |
| 271 | + pub fn round(self) -> Self { |
| 272 | + Self(self.0.round()) |
| 273 | + } |
| 274 | + |
| 275 | + pub fn sign(self) -> Self { |
| 276 | + -self |
| 277 | + } |
66 | 278 |
|
67 |
| -impl Vector2i { |
68 |
| - pub fn new(x: i32, y: i32) -> Self { |
69 |
| - Self { |
70 |
| - inner: IInner::new(x, y), |
| 279 | + pub fn slerp(self, to: Self, weight: Real) -> Self { |
| 280 | + let start_length_sq = self.length_squared(); |
| 281 | + let end_length_sq = to.length_squared(); |
| 282 | + if start_length_sq == 0.0 || end_length_sq == 0.0 { |
| 283 | + return self.lerp(to, weight); |
71 | 284 | }
|
| 285 | + let start_length = start_length_sq.sqrt(); |
| 286 | + let result_length = lerp(start_length, end_length_sq.sqrt(), weight); |
| 287 | + let angle = self.angle_to(to); |
| 288 | + self.rotated(angle * weight) * (result_length / start_length) |
72 | 289 | }
|
73 |
| -} |
74 | 290 |
|
75 |
| -impl GodotFfi for Vector2i { |
76 |
| - ffi_methods! { type sys::GDExtensionTypePtr = *mut Self; .. } |
77 |
| -} |
| 291 | + pub fn slide(self, normal: Self) -> Self { |
| 292 | + self - normal * self.dot(normal) |
| 293 | + } |
| 294 | + |
| 295 | + pub fn snapped(self, step: Self) -> Self { |
| 296 | + Self::new( |
| 297 | + snapped(self.x(), step.x()), |
| 298 | + snapped(self.y(), step.y()), |
| 299 | + ) |
| 300 | + } |
78 | 301 |
|
79 |
| -impl std::fmt::Display for Vector2i { |
80 |
| - fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result { |
81 |
| - self.inner.fmt(f) |
| 302 | + pub fn rotated(self, angle: Real) -> Self { |
| 303 | + glam::Affine2::from_angle(angle).transform_vector2(self.into()).into() |
82 | 304 | }
|
83 | 305 | }
|
| 306 | + |
| 307 | +impl_vector!(Vector2i, glam::IVec2, i32, (x, y)); |
| 308 | +impl_vector_from!(Vector2i, Vector2, i32, (x, y)); |
0 commit comments