@@ -2737,13 +2737,15 @@ def set_vocab(self):
2737
2737
2738
2738
text = piece .encode ("utf-8" )
2739
2739
score = 0.0
2740
- if len (piece ) != 0 and token_id < 64789 :
2740
+ # Referencing the tokenizer Python implementation(https://huggingface.co/THUDM/chatglm3-6b/blob/main/tokenization_chatglm.py),
2741
+ # it is only valid if it is less than tokenizer.tokenizer.sp_model.vocab_size()
2742
+ if len (piece ) != 0 and token_id < tokenizer .tokenizer .sp_model .vocab_size ():
2741
2743
score = tokenizer .tokenizer .sp_model .get_score (token_id )
2742
2744
2743
2745
if len (piece ) == 0 :
2744
2746
text = f"[PAD{ token_id } ]" .encode ("utf-8" )
2745
2747
2746
- if token_id >= 64789 :
2748
+ if token_id >= tokenizer . tokenizer . sp_model . vocab_size () :
2747
2749
toktype = SentencePieceTokenTypes .UNKNOWN
2748
2750
tokens .append (text )
2749
2751
scores .append (score )
@@ -2773,7 +2775,7 @@ def set_vocab(self):
2773
2775
special_vocab .add_to_gguf (self .gguf_writer )
2774
2776
2775
2777
def set_gguf_parameters (self ):
2776
- self .gguf_writer .add_name ("ChatGLM-6b-chat" )
2778
+ self .gguf_writer .add_name (self . dir_model . name )
2777
2779
n_embed = self .hparams .get ("hidden_size" , self .hparams .get ("n_embed" ))
2778
2780
n_head = self .hparams .get ("n_head" , self .hparams .get ("num_attention_heads" ))
2779
2781
n_head_kv = self .hparams .get ("multi_query_group_num" , n_head )
@@ -2789,16 +2791,12 @@ def set_gguf_parameters(self):
2789
2791
self .gguf_writer .add_add_bos_token (False )
2790
2792
2791
2793
def modify_tensors (self , data_torch : Tensor , name : str , bid : int | None ) -> Iterable [tuple [str , Tensor ]]:
2792
- if name .endswith (".rotary_pos_emb.inv_freq" ):
2793
- return []
2794
-
2795
2794
del bid # unused
2796
2795
2797
- name = re .sub (r'transformer\.' , '' , name )
2798
-
2799
- if name == "word_embeddings.weight" :
2800
- assert self .tensor_names is not None
2796
+ if name .endswith (".rotary_pos_emb.inv_freq" ):
2797
+ return []
2801
2798
2799
+ name = name .removeprefix ("transformer." )
2802
2800
return [(self .map_tensor_name (name ), data_torch )]
2803
2801
2804
2802
0 commit comments