We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Using jupyter notebook in jupyter/scipy-notebook docker container DockerFile
FROM jupyter/scipy-notebook:2ce7c06a61a1 RUN pip install dabest
Using example from github:
import pandas as pd import dabest iris = pd.read_csv("https://github.com/mwaskom/seaborn-data/raw/master/iris.csv") iris_dabest = dabest.load(data=iris, x="species", y="petal_width", idx=("setosa", "versicolor", "virginica")) iris_dabest.mean_diff.plot()
output:
--------------------------------------------------------------------------- TypeError Traceback (most recent call last) <ipython-input-4-eb33a02ff120> in <module> 1 # Produce a Cumming estimation plot. ----> 2 iris_dabest.mean_diff.plot() /opt/conda/lib/python3.7/site-packages/dabest/_classes.py in plot(self, color_col, raw_marker_size, es_marker_size, swarm_label, contrast_label, swarm_ylim, contrast_ylim, custom_palette, swarm_desat, halfviolin_desat, halfviolin_alpha, float_contrast, show_pairs, group_summaries, group_summaries_offset, fig_size, dpi, swarmplot_kwargs, violinplot_kwargs, slopegraph_kwargs, reflines_kwargs, group_summary_kwargs, legend_kwargs) 1233 del all_kwargs["self"] 1234 -> 1235 out = EffectSizeDataFramePlotter(self, **all_kwargs) 1236 1237 return out /opt/conda/lib/python3.7/site-packages/dabest/plotter.py in EffectSizeDataFramePlotter(EffectSizeDataFrame, **plot_kwargs) 375 gap_width_percent=1.5, 376 type=group_summaries, ax=rawdata_axes, --> 377 **group_summary_kwargs) 378 379 /opt/conda/lib/python3.7/site-packages/dabest/plot_tools.py in gapped_lines(data, x, y, type, offset, ax, line_color, gap_width_percent, **kwargs) 160 161 medians = data.groupby(x)[y].median().reindex(index=group_order) --> 162 quantiles = data.groupby(x)[y].quantile([0.25, 0.75])\ 163 .unstack()\ 164 .reindex(index=group_order) /opt/conda/lib/python3.7/site-packages/pandas/core/groupby/groupby.py in quantile(self, q, interpolation) 1906 post_processing=post_processor, 1907 q=q, -> 1908 interpolation=interpolation, 1909 ) 1910 /opt/conda/lib/python3.7/site-packages/pandas/core/groupby/groupby.py in _get_cythonized_result(self, how, grouper, aggregate, cython_dtype, needs_values, needs_mask, needs_ngroups, result_is_index, pre_processing, post_processing, **kwargs) 2246 func = partial(func, ngroups) 2247 -> 2248 func(**kwargs) # Call func to modify indexer values in place 2249 2250 if result_is_index: pandas/_libs/groupby.pyx in pandas._libs.groupby.group_quantile() TypeError: must be real number, not list
I have noticed this error tends to happen when using float_contrast=False (either specified with two samples, or when using more than two samples).
The text was updated successfully, but these errors were encountered:
Hi @dcnadler,
This seems suspiciously familiar to #52. Are you using pandas==0.25.0?
pandas==0.25.0
Sorry, something went wrong.
@josesho, yes pandas 0.25.0
Can you try either downgrading to 0.24 or upgrading to 0.25.1?
0.24
0.25.1
No branches or pull requests
Using jupyter notebook in jupyter/scipy-notebook docker container
DockerFile
Using example from github:
output:
I have noticed this error tends to happen when using float_contrast=False (either specified with two samples, or when using more than two samples).
The text was updated successfully, but these errors were encountered: